CoRAG 来自微软与人大的创新RAG框架技术

news2025/2/4 0:59:19

在这里插入图片描述

微软与人大合作开发的CoRAG(Chain-of-Retrieval Augmented Generation)是一种创新的检索增强生成(RAG)框架,旨在通过模拟人类思考方式来提升大语言模型(LLM)在复杂问题上的推理和回答能力。以下是对CoRAG的深度介绍:

1. CoRAG的核心理念

CoRAG的核心思想是通过动态调整查询链(retrieval chains),以逐步推理的方式解决复杂问题。具体而言,CoRAG从一个初始问题开始,通过多次检索相关信息并生成中间答案,逐步接近最终答案。这种多步推理机制模仿了人类在面对复杂问题时的思考过程,从而提高了答案的质量和可靠性。

2. 技术架构

  • 检索链机制:CoRAG采用了一种动态检索机制,每次检索后根据当前状态微调模型,以优化后续查询的方向。这种机制允许模型在推理过程中不断调整其行为,从而更高效地获取所需信息。
  • 解码策略:在推理阶段,CoRAG使用多种解码策略来控制计算量,确保在资源有限的情况下仍能提供高质量的回答。
  • 成本约束优化:CoRAG通过蒙特卡洛树搜索(MCTS)框架优化块组合顺序,平衡检索质量与资源消耗,从而提升生成质量。

3. 应用场景

CoRAG特别适用于需要深度推理和多步骤信息访问的复杂查询场景。例如,在处理跨领域问题、需要综合多个数据源的信息时,CoRAG能够显著提高答案的准确性和全面性。

4. 实验验证

大量实验表明,CoRAG在多个基准测试中表现优异。例如,在KILT基准测试中,CoRAG在多步分析任务上取得了显著的性能提升。此外,CoRAG在资源受限环境中也展现了良好的成本效益,其生成质量比基线模型提高了约30%。

5. 理论意义与实践价值

  • 理论意义:CoRAG为理解人类认知过程提供了新的视角,并为开发更智能的AI系统提供了理论基础。
  • 实践价值:CoRAG能够显著提升企业级应用中的信息检索和生成能力,特别是在需要高效处理复杂问题的场景中,如医疗诊断、法律咨询等。

6. 与其他RAG技术的比较

相比于传统的RAG方法,CoRAG具有以下优势:

  • 动态调整能力:CoRAG可以根据当前状态动态调整查询方向,而传统RAG通常基于固定查询链。
  • 成本效率:通过优化块组合顺序和解码策略,CoRAG在资源受限环境下表现更优。
  • 适应性更强:CoRAG能够适应不同类型的查询需求,从而提供更精准的答案。

7.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291525.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt Creator 中使用 vcpkg

Qt Creator 中使用 vcpkg Qt Creator 是一个跨平台的轻量级 IDE,做 Qt 程序开发的同学们肯定对这个 IDE 都比较属于。这个 IDE 虽然没有 Visual Stdio 功能那么强,但是由于和 Qt 集成的比较深,用来开发 Qt 程序还是很顺手的。 早期&#xf…

mysql中in和exists的区别?

大家好,我是锋哥。今天分享关于【mysql中in和exists的区别?】面试题。希望对大家有帮助; mysql中in和exists的区别? 在 MySQL 中,IN 和 EXISTS 都是用于子查询的操作符,但它们在执行原理和适用场景上有所不…

智慧园区管理系统推动企业智能运维与资源优化的全新路径分析

内容概要 在当今快速发展的商业环境中,园区管理的数字化转型显得尤为重要。在这个背景下,快鲸智慧园区管理系统应运而生,成为企业实现高效管理的最佳选择。它通过整合互联网、物联网等先进技术,以智能化的方式解决了传统管理模式…

物联网 STM32【源代码形式-使用以太网】连接OneNet IOT从云产品开发到底层MQTT实现,APP控制 【保姆级零基础搭建】

物联网(IoT)‌是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器等装置与技术,实时采集并连接任何需要监控、连接、互动的物体或过程,实现对物品和过程的智能化感知、识别和管理。物联网的核心功能包括数据采集与监…

谭浩强C语言程序设计(4) 8章(下)

1、输入三个字符串按照字母顺序从小到大输出 #include <cstdio> // 包含cstdio头文件&#xff0c;用于输入输出函数 #include <cstring> // 包含cstring头文件&#xff0c;用于字符串处理函数#define N 20 // 定义字符串的最大长度为20// 函数&#xff1a;…

使用朴素贝叶斯对散点数据进行分类

本文将通过一个具体的例子&#xff0c;展示如何使用 Python 和 scikit-learn 库中的 GaussianNB 模型&#xff0c;对二维散点数据进行分类&#xff0c;并可视化分类结果。 1. 数据准备 假设我们有两个类别的二维散点数据&#xff0c;每个类别包含若干个点。我们将这些点分别存…

【Pytorch和Keras】使用transformer库进行图像分类

目录 一、环境准备二、基于Pytorch的预训练模型1、准备数据集2、加载预训练模型3、 使用pytorch进行模型构建 三、基于keras的预训练模型四、模型测试五、参考 现在大多数的模型都会上传到huggface平台进行统一的管理&#xff0c;transformer库能关联到huggface中对应的模型&am…

Python 深拷贝与浅拷贝:数据复制的奥秘及回溯算法中的应用

引言 在 Python 编程领域&#xff0c;数据复制是极为常见的操作。而深拷贝和浅拷贝这两个概念&#xff0c;如同紧密关联却又各具特色的双子星&#xff0c;在数据处理过程中扮演着重要角色。深入理解它们&#xff0c;不仅有助于编写出高效、准确的代码&#xff0c;还能避免许多…

简单易懂的倒排索引详解

文章目录 简单易懂的倒排索引详解一、引言 简单易懂的倒排索引详解二、倒排索引的基本结构三、倒排索引的构建过程四、使用示例1、Mapper函数2、Reducer函数 五、总结 简单易懂的倒排索引详解 一、引言 倒排索引是一种广泛应用于搜索引擎和大数据处理中的数据结构&#xff0c;…

初级数据结构:栈和队列

目录 一、栈 (一)、栈的定义 (二)、栈的功能 (三)、栈的实现 1.栈的初始化 2.动态扩容 3.压栈操作 4.出栈操作 5.获取栈顶元素 6.获取栈顶元素的有效个数 7.检查栈是否为空 8.栈的销毁 9.完整代码 二、队列 (一)、队列的定义 (二)、队列的功能 (三&#xff09…

阿里云 - RocketMQ入门

前言 云消息队列 RocketMQ 版产品具备异步通信的优势&#xff0c;主要应用于【异步解耦】、【流量削峰填谷】等场景对于同步链路&#xff0c;需要实时返回调用结果的场景&#xff0c;建议使用RPC调用方案阿里云官网地址RocketMQ官网地址 模型概述 生产者生产消息并发送至服务…

Agentic Automation:基于Agent的企业认知架构重构与数字化转型跃迁---我的AI经典战例

文章目录 Agent代理Agent组成 我在企业实战AI Agent企业痛点我构建的AI Agent App 项目开源 & 安装包下载 大家好&#xff0c;我是工程师令狐&#xff0c;今天想给大家讲解一下AI智能体&#xff0c;以及企业与AI智能体的结合&#xff0c;文章中我会列举自己在企业中Agent实…

列表标签(无序列表、有序列表)

无序列表 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head><…

每天学点小知识之设计模式的艺术-策略模式

行为型模式的名称、定义、学习难度和使用频率如下表所示&#xff1a; 1.如何理解模板方法模式 模板方法模式是结构最简单的行为型设计模式&#xff0c;在其结构中只存在父类与子类之间的继承关系。通过使用模板方法模式&#xff0c;可以将一些复杂流程的实现步骤封装在一系列基…

AI开发学习之——PyTorch框架

PyTorch 简介 PyTorch &#xff08;Python torch&#xff09;是由 Facebook AI 研究团队开发的开源机器学习库&#xff0c;广泛应用于深度学习研究和生产。它以动态计算图和易用性著称&#xff0c;支持 GPU 加速计算&#xff0c;并提供丰富的工具和模块。 PyTorch的主要特点 …

SAP HCM insufficient authorization, no.skipped personnel 总结归纳

导读 权限:HCM模块中有普通权限和结构化权限。普通权限就是PFCG的权限&#xff0c;结构化权限就是按照部门ID授权&#xff0c;颗粒度更细&#xff0c;对分工明细化的单位尤其重要&#xff0c;今天遇到的问题就是结构化权限的问题。 作者&#xff1a;vivi&#xff0c;来源&…

机器学习算法在网络安全中的实践

机器学习算法在网络安全中的实践 本文将深入探讨机器学习算法在网络安全领域的应用实践&#xff0c;包括基本概念、常见算法及其应用案例&#xff0c;从而帮助程序员更好地理解和应用这一领域的技术。"> 序言 网络安全一直是信息技术领域的重要议题&#xff0c;随着互联…

java-抽象类注意点

ChinesePerson 类 public class ChinesePerson extends Person{public ChinesePerson(){}public ChinesePerson(String name, int age){super(name, age);}Overridepublic void greet() {System.out.println("你好&#xff0c;我的名字叫" this.getName());} }Engl…

问deepseek,如何看待ai降低学习成本而导致软件开发岗位需求降低,和工资下降。 软件从业人员何去何从?

它给我的回答是这样的&#xff1a; 思考逻辑 嗯&#xff0c;用户问的是AI如何降低学习成本&#xff0c;进而导致软件开发岗位需求减少和工资下降&#xff0c;以及软件从业人员该怎么办。这个问题挺复杂的&#xff0c;我得先理清楚各个部分。首先&#xff0c;AI确实在改变很多行…

Jason配置环境变量

jason官网 https://jason-lang.github.io/ https://github.com/jason-lang/jason/releases 步骤 安装 Java 21 或更高版本 安装 Visual Studio Code 根据操作系统&#xff0c;请按照以下具体步骤操作 视窗 下载 Jason 的最新版本&#xff0c;选择“jason-bin-3.3.0.zip”…