使用朴素贝叶斯对散点数据进行分类

news2025/2/4 0:43:56

本文将通过一个具体的例子,展示如何使用 Python 和 scikit-learn 库中的 GaussianNB 模型,对二维散点数据进行分类,并可视化分类结果。

1. 数据准备

假设我们有两个类别的二维散点数据,每个类别包含若干个点。我们将这些点分别存储为 NumPy 数组,并为每个点分配一个类别标签。

import numpy as np

# 类别 1 的点集
class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])

# 类别 2 的点集
class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

# 合并数据
X = np.vstack((class1_points, class2_points))

# 创建标签
y = np.array([0] * len(class1_points) + [1] * len(class2_points))

2. 训练朴素贝叶斯模型

朴素贝叶斯分类器基于贝叶斯定理,假设特征之间相互独立。GaussianNB 是一种适用于连续数值型数据的朴素贝叶斯分类器,它假设每个特征的分布符合高斯分布。

from sklearn.naive_bayes import GaussianNB

# 初始化朴素贝叶斯分类器
model = GaussianNB()

# 训练模型
model.fit(X, y)

3. 可视化分类结果

为了更好地理解模型的分类效果,我们可以绘制散点图,并显示决策边界。这有助于直观地观察模型如何区分两个类别。

import matplotlib.pyplot as plt

# 创建网格点
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))

# 预测网格点的类别
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# 绘制决策边界和散点图
plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Naive Bayes Decision Boundary')
plt.show()

可视化结果展示:

4. 预测新数据点

训练好的模型可以用于对新的数据点进行分类。我们将提供一些新的数据点,并使用模型预测它们的类别。

# 新数据点
new_points = np.array([[2.0, 2.0],
                       [3.5, 3.0]])

# 预测新数据点的类别
new_predictions = model.predict(new_points)
print("New points predictions:", new_predictions)

预测结果:

5. 完整代码

以下是完整的代码实现,包括数据准备、模型训练、可视化和新数据点的预测。

import numpy as np
from sklearn.naive_bayes import GaussianNB
import matplotlib.pyplot as plt

# 类别 1 的点集
class1_points = np.array([[1.9, 1.2],
                          [1.5, 2.1],
                          [1.9, 0.5],
                          [1.5, 0.9],
                          [0.9, 1.2],
                          [1.1, 1.7],
                          [1.4, 1.1]])

# 类别 2 的点集
class2_points = np.array([[3.2, 3.2],
                          [3.7, 2.9],
                          [3.2, 2.6],
                          [1.7, 3.3],
                          [3.4, 2.6],
                          [4.1, 2.3],
                          [3.0, 2.9]])

# 合并数据
X = np.vstack((class1_points, class2_points))

# 创建标签
y = np.array([0] * len(class1_points) + [1] * len(class2_points))

# 初始化朴素贝叶斯分类器
model = GaussianNB()

# 训练模型
model.fit(X, y)

# 创建网格点
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))

# 预测网格点的类别
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

# 绘制决策边界和散点图
plt.contourf(xx, yy, Z, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Naive Bayes Decision Boundary')
plt.show()

# 新数据点
new_points = np.array([[2.0, 2.0],
                       [3.5, 3.0]])

# 预测新数据点的类别
new_predictions = model.predict(new_points)
print("New points predictions:", new_predictions)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291518.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Pytorch和Keras】使用transformer库进行图像分类

目录 一、环境准备二、基于Pytorch的预训练模型1、准备数据集2、加载预训练模型3、 使用pytorch进行模型构建 三、基于keras的预训练模型四、模型测试五、参考 现在大多数的模型都会上传到huggface平台进行统一的管理,transformer库能关联到huggface中对应的模型&am…

Python 深拷贝与浅拷贝:数据复制的奥秘及回溯算法中的应用

引言 在 Python 编程领域,数据复制是极为常见的操作。而深拷贝和浅拷贝这两个概念,如同紧密关联却又各具特色的双子星,在数据处理过程中扮演着重要角色。深入理解它们,不仅有助于编写出高效、准确的代码,还能避免许多…

简单易懂的倒排索引详解

文章目录 简单易懂的倒排索引详解一、引言 简单易懂的倒排索引详解二、倒排索引的基本结构三、倒排索引的构建过程四、使用示例1、Mapper函数2、Reducer函数 五、总结 简单易懂的倒排索引详解 一、引言 倒排索引是一种广泛应用于搜索引擎和大数据处理中的数据结构,…

初级数据结构:栈和队列

目录 一、栈 (一)、栈的定义 (二)、栈的功能 (三)、栈的实现 1.栈的初始化 2.动态扩容 3.压栈操作 4.出栈操作 5.获取栈顶元素 6.获取栈顶元素的有效个数 7.检查栈是否为空 8.栈的销毁 9.完整代码 二、队列 (一)、队列的定义 (二)、队列的功能 (三&#xff09…

阿里云 - RocketMQ入门

前言 云消息队列 RocketMQ 版产品具备异步通信的优势,主要应用于【异步解耦】、【流量削峰填谷】等场景对于同步链路,需要实时返回调用结果的场景,建议使用RPC调用方案阿里云官网地址RocketMQ官网地址 模型概述 生产者生产消息并发送至服务…

Agentic Automation:基于Agent的企业认知架构重构与数字化转型跃迁---我的AI经典战例

文章目录 Agent代理Agent组成 我在企业实战AI Agent企业痛点我构建的AI Agent App 项目开源 & 安装包下载 大家好,我是工程师令狐,今天想给大家讲解一下AI智能体,以及企业与AI智能体的结合,文章中我会列举自己在企业中Agent实…

列表标签(无序列表、有序列表)

无序列表 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head><…

每天学点小知识之设计模式的艺术-策略模式

行为型模式的名称、定义、学习难度和使用频率如下表所示&#xff1a; 1.如何理解模板方法模式 模板方法模式是结构最简单的行为型设计模式&#xff0c;在其结构中只存在父类与子类之间的继承关系。通过使用模板方法模式&#xff0c;可以将一些复杂流程的实现步骤封装在一系列基…

AI开发学习之——PyTorch框架

PyTorch 简介 PyTorch &#xff08;Python torch&#xff09;是由 Facebook AI 研究团队开发的开源机器学习库&#xff0c;广泛应用于深度学习研究和生产。它以动态计算图和易用性著称&#xff0c;支持 GPU 加速计算&#xff0c;并提供丰富的工具和模块。 PyTorch的主要特点 …

SAP HCM insufficient authorization, no.skipped personnel 总结归纳

导读 权限:HCM模块中有普通权限和结构化权限。普通权限就是PFCG的权限&#xff0c;结构化权限就是按照部门ID授权&#xff0c;颗粒度更细&#xff0c;对分工明细化的单位尤其重要&#xff0c;今天遇到的问题就是结构化权限的问题。 作者&#xff1a;vivi&#xff0c;来源&…

机器学习算法在网络安全中的实践

机器学习算法在网络安全中的实践 本文将深入探讨机器学习算法在网络安全领域的应用实践&#xff0c;包括基本概念、常见算法及其应用案例&#xff0c;从而帮助程序员更好地理解和应用这一领域的技术。"> 序言 网络安全一直是信息技术领域的重要议题&#xff0c;随着互联…

java-抽象类注意点

ChinesePerson 类 public class ChinesePerson extends Person{public ChinesePerson(){}public ChinesePerson(String name, int age){super(name, age);}Overridepublic void greet() {System.out.println("你好&#xff0c;我的名字叫" this.getName());} }Engl…

问deepseek,如何看待ai降低学习成本而导致软件开发岗位需求降低,和工资下降。 软件从业人员何去何从?

它给我的回答是这样的&#xff1a; 思考逻辑 嗯&#xff0c;用户问的是AI如何降低学习成本&#xff0c;进而导致软件开发岗位需求减少和工资下降&#xff0c;以及软件从业人员该怎么办。这个问题挺复杂的&#xff0c;我得先理清楚各个部分。首先&#xff0c;AI确实在改变很多行…

Jason配置环境变量

jason官网 https://jason-lang.github.io/ https://github.com/jason-lang/jason/releases 步骤 安装 Java 21 或更高版本 安装 Visual Studio Code 根据操作系统&#xff0c;请按照以下具体步骤操作 视窗 下载 Jason 的最新版本&#xff0c;选择“jason-bin-3.3.0.zip”…

word2vec 实战应用介绍

Word2Vec 是一种由 Google 在 2013 年推出的重要词嵌入模型,通过将单词映射为低维向量,实现了对自然语言处理任务的高效支持。其核心思想是利用深度学习技术,通过训练大量文本数据,将单词表示为稠密的向量形式,从而捕捉单词之间的语义和语法关系。以下是关于 Word2Vec 实战…

AI技术在SEO关键词优化中的应用策略与前景展望

内容概要 在数字营销的快速发展中&#xff0c;AI技术逐渐成为SEO领域的核心驱动力。其通过强大的数据分析和处理能力&#xff0c;不仅改变了我们优化关键词的方式&#xff0c;也提升了搜索引擎优化的效率和效果。在传统SEO中&#xff0c;关键词的选择与组合常依赖人工经验和直…

c/c++高级编程

1.避免变量冗余初始化 结构体初始化为0&#xff0c;等价于对该内存进行一次memset&#xff0c;对于较大的结构体或者热点函数&#xff0c;重复的赋值带来冗余的性能开销。现代编译器对此类冗余初始化代码具有一定的优化能力&#xff0c;因此&#xff0c;打开相关的编译选项的优…

【网络】传输层协议TCP(重点)

文章目录 1. TCP协议段格式2. 详解TCP2.1 4位首部长度2.2 32位序号与32位确认序号&#xff08;确认应答机制&#xff09;2.3 超时重传机制2.4 连接管理机制(3次握手、4次挥手 3个标志位)2.5 16位窗口大小&#xff08;流量控制&#xff09;2.6 滑动窗口2.7 3个标志位 16位紧急…

HarmonyOS:ArkWeb进程

ArkWeb是多进程模型,分为应用进程、Web渲染进程、Web GPU进程、Web孵化进程和Foundation进程。 说明 Web内核没有明确的内存大小申请约束,理论上可以无限大,直到被资源管理释放。 ArkWeb进程模型图 应用进程中Web相关线程(应用唯一) 应用进程为主进程。包含网络线程、Vi…

说说Redis的内存淘汰策略?

大家好&#xff0c;我是锋哥。今天分享关于【说说Redis的内存淘汰策略?】面试题。希望对大家有帮助&#xff1b; 说说Redis的内存淘汰策略? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Redis 提供了多种内存淘汰策略&#xff0c;用于在内存达到限制时决定如何…