5分钟在本地PC上使用VLLM快速启动DeepSeek-R1-Distill-Qwen-32B

news2025/2/3 17:57:46

5分钟在本地PC上使用VLLM快速启动DeepSeek-R1-Distill-Qwen-32B

    • 前言
    • 环境准备
      • 所需工具
      • 创建虚拟环境
      • 安装VLLM及依赖库
    • 模型下载
      • 安装Hugging Face CLI
      • 下载DeepSeek-R1-Distill-Qwen-32B
    • 模型启动
      • 启动命令
      • 启动确认
    • 模型验证
      • 发送API请求
      • 示例输出
    • 注意事项
    • 参考链接

前言

VLLM 是一个高效且轻量的大规模语言模型(LLM)服务器。本文将介绍如何在本地PC上使用VLLM快速启动 DeepSeek-R1-Distill-Qwen-32B 这一高性能语言模型。按照本文的步骤操作,您可以在5分钟内完成模型的启动。

环境准备

所需工具

请确保已安装以下工具:

  • conda:用于管理Python虚拟环境。
  • pip:用于安装Python包。
  • VLLM:用于高效运行LLM的服务器。
  • flash-attn:用于加速模型推理的库。

创建虚拟环境

首先,创建一个Python 3.11的虚拟环境并激活它。

conda create -n vllm_v0.7.1 python=3.11 -y
conda activate vllm_v0.7.1

安装VLLM及依赖库

运行以下命令安装VLLM和flash-attn

pip install vllm
pip install flash-attn --no-build-isolation

模型下载

安装Hugging Face CLI

为了下载模型,首先安装Hugging Face CLI。

pip install "huggingface_hub[hf_transfer]"

下载DeepSeek-R1-Distill-Qwen-32B

使用以下命令下载 DeepSeek-R1-Distill-Qwen-32B 模型。

HF_HUB_ENABLE_HF_TRANSFER=1 \
huggingface-cli download deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

模型启动

启动命令

使用以下命令启动模型。
(通过CUDA_VISIBLE_DEVICES指定使用的GPU,并通过--tensor-parallel-size指定GPU数量。)

CUDA_VISIBLE_DEVICES=3,1,0,2 \
VLLM_USE_V1=1 \
VLLM_WORKER_MULTIPROC_METHOD=spawn \
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B \
--trust-remote-code --served-model-name gpt-4 \
--gpu-memory-utilization 0.98 --tensor-parallel-size 4 \
--port 8000 --max-model-len 65536

启动确认

成功启动后,您将看到以下消息:

INFO:     Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)

模型验证

发送API请求

使用以下命令向启动的模型发送API请求,验证其是否正常运行。

invoke_url='http://localhost:8000/v1/chat/completions'

authorization_header='Authorization: Bearer sk-dummy'
accept_header='Accept: application/json'
content_type_header='Content-Type: application/json'

data=$'{
  "messages": [
    {
      "role": "user",
      "content": "Which number is larger, 9.11 or 9.8?"
    }
  ],
  "stream": false,
  "model": "gpt-4",
  "max_tokens": 4096,
  "presence_penalty": 0,
  "frequency_penalty": 0,
  "top_p": 0.7,
  "temperature": 0.6
}'

response=$(curl --silent -i -w "\n%{http_code}" --request POST \
  --url "$invoke_url" \
  --header "$authorization_header" \
  --header "$accept_header" \
  --header "$content_type_header" \
  --data "$data"
)

echo "$response"

示例输出

您将收到类似以下的响应:
image.png


注意事项

  • GPU内存设置--gpu-memory-utilization 0.98用于设置GPU内存利用率,请根据您的环境调整。
  • 张量并行处理--tensor-parallel-size 4应根据使用的GPU数量进行调整。
  • 端口号--port 8000是API的端口号,如果与其他应用程序冲突,请更改。

参考链接

  • VLLM官方文档
  • DeepSeek-R1-Distill-Qwen-32B(Hugging Face)

按照以上步骤,您可以在本地PC上快速启动 DeepSeek-R1-Distill-Qwen-32B 模型。赶快试试吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291379.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.13 降维打击:扁平化操作的六种武器

1.13 降维打击:扁平化操作的六种武器 目录 #mermaid-svg-bbLxDryjxBbXe3tu {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-bbLxDryjxBbXe3tu .error-icon{fill:#552222;}#mermaid-svg-bbLxDryjxBbXe3tu…

Oracle Primavera P6 最新版 v24.12 更新 2/2

目录 一. 引言 二. P6 EPPM 更新内容 1. 用户管理改进 2. 更轻松地标准化用户设置 3. 摘要栏标签汇总数据字段 4. 将里程碑和剩余最早开始日期拖到甘特图上 5. 轻松访问审计数据 6. 粘贴数据时排除安全代码 7. 改进了状态更新卡片视图中的筛选功能 8. 直接从活动电子…

AI-on-the-edge-device - 将“旧”设备接入智能世界

人工智能无处不在,从语音到图像识别。虽然大多数 AI 系统都依赖于强大的处理器或云计算,但**边缘计算**通过利用现代处理器的功能,使 AI 更接近最终用户。 本项目演示了使用 **ESP32**(一种低成本、支持 AI 的设备)进行…

Openfga 授权模型搭建

1.根据项目去启动 配置一个 openfga 服务器 先创建一个 config.yaml文件 cd /opt/openFGA/conf touch ./config.yaml 怎么配置? 根据官网来看 openfga/.config-schema.json at main openfga/openfga GitHub 这里讲述详细的每一个配置每一个类型 这些配置有…

C++模板编程——可变参函数模板之折叠表达式

目录 1. 什么是折叠表达式 2. 一元左折 3. 一元右折 4. 二元左折 5. 二元右折 6. 后记 上一节主要讲解了可变参函数模板和参数包展开,这一节主要讲一下折叠表达式。 1. 什么是折叠表达式 折叠表达式是C17中引入的概念,引入折叠表达式的目的是为了…

ArkTS渲染控制

文章目录 if/else:条件渲染ArkUI通过自定义组件的build()函数和@Builder装饰器中的声明式UI描述语句构建相应的UI。在声明式描述语句中开发者除了使用系统组件外,还可以使用渲染控制语句来辅助UI的构建,这些渲染控制语句包括控制组件是否显示的条件渲染语句,基于数组数据快…

UbuntuWindows双系统安装

做系统盘: Ubuntu20.04双系统安装详解(内容详细,一文通关!)_ubuntu 20.04-CSDN博客 ubuntu系统调整大小: 调整指南: 虚拟机中的Ubuntu扩容及重新分区方法_ubuntu重新分配磁盘空间-CSDN博客 …

【leetcode详解】T598 区间加法

598. 区间加法 II - 力扣(LeetCode) 思路分析 核心在于将问题转化, 题目不是要求最大整数本身,而是要求解最大整数的个数 结合矩阵元素的增加原理,我们将抽象问题转为可操作的方法,其实就是再找每组ops中…

备考蓝桥杯嵌入式2:使用LCD完成显示

LCD LCD(液晶显示器,Liquid Crystal Display)是一种常见的平面显示技术,广泛应用于电视、电脑显示器、手机屏幕等设备。蓝桥杯中,也有涉及到使用LCD来完成字符串显示的要求和操作。 考场上会给予LCD的驱动包&#xf…

网络爬虫学习:应用selenium获取Edge浏览器版本号,自动下载对应版本msedgedriver,确保Edge浏览器顺利打开。

一、前言 我从24年11月份开始学习网络爬虫应用开发,经过2个来月的努力,于1月下旬完成了开发一款网络爬虫软件的学习目标。这里对本次学习及应用开发进行一下回顾总结。 前几天我已经发了一篇日志(网络爬虫学习:应用selenium从搜…

Elasticsearch的索引生命周期管理

目录 说明零、参考一、ILM的基本概念二、ILM的实践步骤Elasticsearch ILM策略中的“最小年龄”是如何计算的?如何监控和调整Elasticsearch ILM策略的性能? 1. **监控性能**使用/_cat/thread_pool API基本请求格式请求特定线程池的信息响应内容 2. **调整…

Observability:实现 OpenTelemetry 原生可观察性的商业价值

作者:来自 Elastic David Hope 利用开放标准和简化的数据收集转变组织的可观察性策略。 现代组织面临着前所未有的可观察性挑战。随着系统变得越来越复杂和分散,传统的监控方法难以跟上步伐。由于数据量每两年翻一番,系统跨越多个云和技术&am…

Zabbix 推送告警 消息模板 美化(钉钉Webhook机器人、邮件)

目前网络上已经有很多关于Zabbix如何推送告警信息到钉钉机器人、到邮件等文章。 但是在搜索下来,发现缺少了对告警信息的美化的文章。 本文不赘述如何对Zabbix对接钉钉、对接邮件,仅介绍我采用的美化消息模板的内容。 活用AI工具可以减轻很多学习、脑力负…

罗格斯大学:通过输入嵌入对齐选择agent

📖标题:AgentRec: Agent Recommendation Using Sentence Embeddings Aligned to Human Feedback 🌐来源:arXiv, 2501.13333 🌟摘要 🔸多代理系统必须决定哪个代理最适合给定的任务。我们提出了一种新的架…

机器学习7-全连接神经网络3-过拟合与超参数

机器学习6-全连接神经网络3-过拟合欠拟合 过拟合应对过拟合-最优方案:获取更多的训练数据应对过拟合-次优方案:正则化应对过拟合-次优方案2:随机失活综合考量 超参数超参数优化方法 过拟合 机器学习的根本问题是优化和泛化的问题。优化——是…

【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙

目录 1. 梯度基本计算 2. 控制梯度计算 3. 梯度计算注意 4. 小节 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活…

pytorch生成对抗网络

人工智能例子汇总:AI常见的算法和例子-CSDN博客 生成对抗网络(GAN,Generative Adversarial Network)是一种深度学习模型,由两个神经网络组成:生成器(Generator)和判别器&#xff0…

Baklib在企业知识管理领域的领先地位与三款竞品的深度剖析

内容概要 在现代企业中,知识管理已成为提高工作效率和推动创新的重要手段。Baklib作为一款领先的知识中台,以其集成化和智能化的特性,帮助企业在这一领域取得了显著成就。该平台具备强大的知识收集、整理、存储和共享功能,通过构…

2 MapReduce

2 MapReduce 1. MapReduce 介绍1.1 MapReduce 设计构思 2. MapReduce 编程规范3. Mapper以及Reducer抽象类介绍1.Mapper抽象类的基本介绍2.Reducer抽象类基本介绍 4. WordCount示例编写5. MapReduce程序运行模式6. MapReduce的运行机制详解6.1 MapTask 工作机制6.2 ReduceTask …

测压表压力表计量表针头针尾检测数据集VOC+YOLO格式4862张4类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4862 标注数量(xml文件个数):4862 标注数量(txt文件个数):4862 …