pytorch实现主成分分析 (PCA):用于数据降维和特征提取

news2025/2/3 12:24:25

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

使用 PyTorch 实现主成分分析(PCA)可以通过以下步骤进行:

  1. 标准化数据:首先,需要对数据进行标准化处理,确保每个特征的均值为 0,方差为 1。

  2. 计算协方差矩阵:计算数据的协方差矩阵,以捕捉特征之间的关系。

  3. 特征值分解:对协方差矩阵进行特征值分解,获得主成分。

  4. 选择主成分:根据特征值的大小选择前几个主成分,通常选择方差最大的主成分。

  5. 转换数据:将数据投影到选定的主成分上,完成降维。

例子代码:

import torch

def pca(X, num_components):
    # 标准化数据
    mean = torch.mean(X, dim=0)
    X_centered = X - mean
    
    # 计算协方差矩阵
    cov_matrix = torch.mm(X_centered.t(), X_centered) / (X.shape[0] - 1)
    
    # 特征值分解
    eigenvalues, eigenvectors = torch.linalg.eigh(cov_matrix)
    
    # 按特征值降序排列特征向量
    sorted_indices = torch.argsort(eigenvalues, descending=True)
    eigenvectors = eigenvectors[:, sorted_indices]
    
    # 选择前num_components个主成分
    principal_components = eigenvectors[:, :num_components]
    
    # 转换数据
    X_reduced = torch.mm(X_centered, principal_components)
    
    return X_reduced, principal_components

# 示例数据 (假设每行是一个样本,每列是一个特征)
X = torch.tensor([[2.5, 2.4, 3.3],
                  [0.5, 0.7, 1.9],
                  [2.2, 2.9, 3.1],
                  [1.9, 2.2, 2.6]])

# 选择降维后的特征数量
num_components = 2

# 运行PCA
X_reduced, components = pca(X, num_components)

print("降维后的数据:\n", X_reduced)
print("主成分:\n", components)

代码解释:

  • X:输入数据,大小为 (n_samples, n_features),每行表示一个样本,每列表示一个特征。
  • mean:数据的均值,用于数据标准化。
  • cov_matrix:协方差矩阵,捕捉特征之间的关系。
  • eigenvalues, eigenvectors:协方差矩阵的特征值和特征向量。
  • principal_components:降序排列后的特征向量,选择前 num_components 个作为主成分。
  • X_reduced:降维后的数据,投影到选择的主成分上。

主成分分析(PCA,Principal Component Analysis)的主要作用包括以下几个方面:

1. 数据降维

  • 在高维数据集中,PCA 通过找到主要的变化方向,减少数据的维度,同时尽可能保留原始数据的信息。
  • 降维可以减少计算复杂度,提高存储和计算效率,特别是在机器学习和深度学习任务中。
  • 例如,将 100 维的数据降到 2 维或 3 维,使其可以可视化。

2. 去除数据冗余

  • 高维数据通常存在共线性(不同特征之间的相关性较高),PCA 通过去除相关性高的变量,提取最具代表性的特征,减少数据冗余。

3. 特征提取和数据压缩

  • 在某些应用中,PCA 可用于从数据中提取最重要的信息,例如图像处理中用 PCA 进行特征提取和降噪。
  • 通过只保留主要特征向量,数据可以被压缩,同时仍然保持大部分信息。

4. 提高机器学习模型的性能

  • 在高维数据集上,PCA 可减少维度,提高模型的泛化能力,减少过拟合。
  • 特别是在数据特征多但样本数量有限的情况下(如基因数据分析),PCA 能有效减少维度,提高分类或回归模型的准确性。

5. 数据可视化

  • 许多数据集的特征数目较多(例如 100 维或 1000 维),不便于可视化。
  • PCA 可以将数据降到 2D 或 3D,使其能够在散点图或其他图表中直观展示数据结构。

6. 降噪(Denoising)

  • 在信号处理或图像处理中,PCA 可以去除噪声数据,只保留主要成分,从而增强数据质量。例如,在人脸识别中,PCA 可以用来去除光照变化、背景噪声等无关信息。

7. 异常检测(Outlier Detection)

  • PCA 可以用于异常检测,特别是当数据点在降维后的投影空间中与大部分数据点相距较远时,可以被识别为异常点。

应用领域

  • 图像处理(如人脸识别、特征降维)
  • 自然语言处理(如词向量降维)
  • 金融数据分析(如股票市场数据降维、风险分析)
  • 基因数据分析(如基因表达数据降维)
  • 推荐系统(如减少用户-商品交互矩阵的维度,提高推荐系统的计算效率)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291267.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小智 AI 聊天机器人

小智 AI 聊天机器人 (XiaoZhi AI Chatbot) 👉参考源项目复现 👉 ESP32SenseVoiceQwen72B打造你的AI聊天伴侣!【bilibili】 👉 手工打造你的 AI 女友,新手入门教程【bilibili】 项目目的 本…

MySql运维篇---008:日志:错误日志、二进制日志、查询日志、慢查询日志,主从复制:概述 虚拟机更改ip注意事项

#先登录mysql mysql -uroot -p1234#通过此系统变量,查看当前mysql的版本中默认的日志格式是哪个 show variables like %binlog\_format%;1.2.3 查看 由于日志是以二进制方式存储的,不能直接读取,需要通过二进制日志查询工具 mysqlbinlog 来查…

理解DeepSeek源代码之如何安装triton包

DeepSeek选择了开源路线,在github上可以下载到所有的源代码还有参数(数据集应该没有开源),大语言模型的源代码规模其实非常小,DeepSeek V3的模型函数不过804行,阅读源代码有助于更好理解大语言模型。 1. D…

C++ Primer 标准库类型string

欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…

为AI聊天工具添加一个知识系统 之83 详细设计之24 度量空间之1 因果关系和过程:认知金字塔

本文要点 度量空间 在本项目(为AI聊天工具添加一个知识系统 )中 是出于对“用”的考量 来考虑的。这包括: 相对-位置 力用(“相”)。正如 法力,相关-速度 体用 (“体”)。例如 重…

如何配置Java JDK

步骤1:点击资源,点击Java下载 https://www.oracle.com/ 步骤2:点击java下载、JDK23下载,下载第一行第一个 步骤3:解压到一个空文件夹下,复制lib地址 步骤4:在设置里面搜索“高级系统设置”;点击…

CodeGPT使用本地部署DeepSeek Coder

目前NV和github都托管了DeepSeek,生成Key后可以很方便的用CodeGPT接入。CodeGPT有三种方式使用AI,分别时Agents,Local LLMs(本地部署AI大模型),LLMs Cloud Model(云端大模型,从你自己…

JAVA安全—反射机制攻击链类对象成员变量方法构造方法

前言 还是JAVA安全,哎,真的讲不完,太多啦。 今天主要是讲一下JAVA中的反射机制,因为反序列化的利用基本都是要用到这个反射机制,还有一些攻击链条的构造,也会用到,所以就讲一下。 什么是反射…

【深度学习】softmax回归的简洁实现

softmax回归的简洁实现 我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节继续使用Fashion-MNIST数据集,并保持批量大小为256。 import torch …

基础篇03-图像的基本运算

本节将简要介绍Halcon中有关图像的两类基本运算,分别是代数运算和逻辑运算。除此之外,还介绍几种特殊的代数运算。 目录 1.引言 2. 基本运算 2.1 加法运算 2.2 减法运算 2.3 乘法运算 2.4 除法运算 2.5 综合实例 3. 逻辑运算 3.1 逻辑与运算 …

工具的应用——安装copilot

一、介绍Copilot copilot是一个AI辅助编程的助手,作为需要拥抱AI的程序员可以从此尝试进入,至于好与不好,应当是小马过河,各有各的心得。这里不做评述。重点在安装copilot的过程中遇到了一些问题,然后把它总结下&…

Alibaba开发规范_编程规约之命名风格

文章目录 命名风格的基本原则1. 命名不能以下划线或美元符号开始或结束2. 严禁使用拼音与英文混合或直接使用中文3. 类名使用 UpperCamelCase 风格,但以下情形例外:DO / BO / DTO / VO / AO / PO / UID 等4. 方法名、参数名、成员变量、局部变量使用 low…

MATLAB中的IIR滤波器设计

在数字信号处理中,滤波器是消除噪声、提取特征或调整信号频率的核心工具。其中,无限脉冲响应(IIR)滤波器因其低阶数实现陡峭滚降的特性,被广泛应用于音频处理、通信系统和生物医学工程等领域。借助MATLAB强大的工具箱&…

vector容器(详解)

本文最后是模拟实现全部讲解,文章穿插有彩色字体,是我总结的技巧和关键 1.vector的介绍及使用 1.1 vector的介绍 https://cplusplus.com/reference/vector/vector/(vector的介绍) 了解 1. vector是表示可变大小数组的序列容器。…

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…

【VUE案例练习】前端vue2+element-ui,后端nodo+express实现‘‘文件上传/删除‘‘功能

近期在做跟毕业设计相关的数据后台管理系统,其中的列表项展示有图片展示,添加/编辑功能有文件上传。 “文件上传/删除”也是我们平时开发会遇到的一个功能,这里分享个人的实现过程,与大家交流谈论~ 一、准备工作 本次案例使用的…

使用真实 Elasticsearch 进行高级集成测试

作者:来自 Elastic Piotr Przybyl 掌握高级 Elasticsearch 集成测试:更快、更智能、更优化。 在上一篇关于集成测试的文章中,我们介绍了如何通过改变数据初始化策略来缩短依赖于真实 Elasticsearch 的集成测试的执行时间。在本期中&#xff0…

【R语言】函数

一、函数格式 如下所示: hello:函数名;function:定义的R对象是函数而不是其它变量;():函数的输入参数,可以为空,也可以包含参数;{}:函数体,如果…

VSCode插件Live Server

简介:插件Live Server能够实现当我们在VSCode编辑器里修改 HTML、CSS 或者 JavaScript 文件时,它都能自动实时地刷新浏览器页面,让我们实时看到代码变化的效果。再也不用手动刷新浏览器了,节省了大量的开发过程耗时! 1…

50. 正点原子官方系统镜像烧写实验

一、Windows下使用OTG烧写系统 1、在Windos使用NXP提供的mfgtool来向开发烧写系统。需要用先将开发板的USB_OTG接口连接到电脑上。 Mfgtool工具是向板子先下载一个Linux系统,然后通过这个系统来完成烧写工作。 切记!使用OTG烧写的时候要先把SD卡拔出来&…