【深度学习】softmax回归的简洁实现

news2025/2/3 11:48:15

softmax回归的简洁实现

我们发现(通过深度学习框架的高级API能够使实现)(softmax)线性(回归变得更加容易)。
同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。
本节继续使用Fashion-MNIST数据集,并保持批量大小为256。

import torch
from torch import nn
from d2l import torch as d2l

初始化模型参数

[softmax回归的输出层是一个全连接层]。
因此,为了实现我们的模型,我们只需在Sequential中添加一个带有10个输出的全连接层。
同样,在这里Sequential并不是必要的,但它是实现深度模型的基础。
我们仍然以均值0和标准差0.01随机初始化权重。

'''
PyTorch不会隐式地调整输入的形状。
因此,我们在线性层前定义了展平层(flatten),来调整网络输入的形状
'''
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))


def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);
  • nn.Sequential
    这是 PyTorch 里的一个容器模块,
    其功能是按顺序依次排列多个神经网络层。
    在执行前向传播时,输入数据会依照层的先后顺序依次通过各个层。
  • nn.Flatten()
    该层的主要作用是把输入的多维张量展平为一维张量。
    方便后续输入到全连接层。
  • nn.Linear(784, 10)
    这是一个全连接层(线性层)。
    全连接层会对输入的 784 维向量进行线性变换,输出一个 10 维的向量。
  • net.apply(init_weights)
    applynn.Module 类的一个方法,它会递归地把指定的函数(这里是 init_weights)应用到 net 网络的每一个子模块上。也就是说,对于 net 中的每个子层,都会调用 init_weights 函数进行权重初始化。

重新审视Softmax的实现

在前面例子中,我们计算了模型的输出,然后将此输出送入交叉熵损失。

从数学上讲,这是一件完全合理的事情。

然而,从计算角度来看,指数可能会造成数值稳定性问题。

回想一下,
softmax函数 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat y_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} y^j=kexp(ok)exp(oj)
其中 y ^ j \hat y_j y^j是预测的概率分布。 o j o_j oj是未规范化的预测 o \mathbf{o} o的第 j j j个元素。如果 o k o_k ok中的一些数值非常大,那么 exp ⁡ ( o k ) \exp(o_k) exp(ok)可能大于数据类型容许的最大数字,即上溢(overflow)。
这将使分母或分子变为inf(无穷大),
最后得到的是0、infnan(不是数字)的 y ^ j \hat y_j y^j
在这些情况下,我们无法得到一个明确定义的交叉熵值。

解决这个问题的一个技巧是:
在继续softmax计算之前,先从所有 o k o_k ok中减去 max ⁡ ( o k ) \max(o_k) max(ok)
这里可以看到每个 o k o_k ok按常数进行的移动不会改变softmax的返回值:

y ^ j = exp ⁡ ( o j − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) exp ⁡ ( max ⁡ ( o k ) ) = exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) . \begin{aligned} \hat y_j & = \frac{\exp(o_j - \max(o_k))\exp(\max(o_k))}{\sum_k \exp(o_k - \max(o_k))\exp(\max(o_k))} \\ & = \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}. \end{aligned} y^j=kexp(okmax(ok))exp(max(ok))exp(ojmax(ok))exp(max(ok))=kexp(okmax(ok))exp(ojmax(ok)).

在减法和规范化步骤之后,可能有些 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok)具有较大的负值。
由于精度受限, exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok))将有接近零的值,即下溢(underflow)。
这些值可能会四舍五入为零,使 y ^ j \hat y_j y^j为零,
并且使得 log ⁡ ( y ^ j ) \log(\hat y_j) log(y^j)的值为-inf
反向传播几步后,我们可能会发现自己面对一屏幕可怕的nan结果。

尽管我们要计算指数函数,但我们最终在计算交叉熵损失时会取它们的对数。
通过将softmax和交叉熵结合在一起,可以避免反向传播过程中可能会困扰我们的数值稳定性问题。
如下面的等式所示,我们避免计算 exp ⁡ ( o j − max ⁡ ( o k ) ) \exp(o_j - \max(o_k)) exp(ojmax(ok))
而可以直接使用 o j − max ⁡ ( o k ) o_j - \max(o_k) ojmax(ok),因为 log ⁡ ( exp ⁡ ( ⋅ ) ) \log(\exp(\cdot)) log(exp())被抵消了。

log ⁡ ( y ^ j ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = log ⁡ ( exp ⁡ ( o j − max ⁡ ( o k ) ) ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) = o j − max ⁡ ( o k ) − log ⁡ ( ∑ k exp ⁡ ( o k − max ⁡ ( o k ) ) ) . \begin{aligned} \log{(\hat y_j)} & = \log\left( \frac{\exp(o_j - \max(o_k))}{\sum_k \exp(o_k - \max(o_k))}\right) \\ & = \log{(\exp(o_j - \max(o_k)))}-\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)} \\ & = o_j - \max(o_k) -\log{\left( \sum_k \exp(o_k - \max(o_k)) \right)}. \end{aligned} log(y^j)=log(kexp(okmax(ok))exp(ojmax(ok)))=log(exp(ojmax(ok)))log(kexp(okmax(ok)))=ojmax(ok)log(kexp(okmax(ok))).

我们也希望保留传统的softmax函数,以备我们需要评估通过模型输出的概率。
但是,我们没有将softmax概率传递到损失函数中,
而是[在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数],
这是一种类似"LogSumExp技巧"的聪明方式。

loss = nn.CrossEntropyLoss(reduction='none')
  • nn.CrossEntropyLoss
    nn.CrossEntropyLoss 是 PyTorch 中用于计算交叉熵损失的类。
    在分类问题中,它结合了 nn.LogSoftmax()nn.NLLLoss() 两个操作,适用于多分类任务。其输入通常是模型的原始输出(未经过 Softmax 激活函数处理)和真实标签。
  • reduction=‘none’
    reductionnn.CrossEntropyLoss 类的一个重要参数,它控制着如何对每个样本的损失进行汇总,具体有以下几种取值:
    • 'none':不进行任何汇总操作,直接返回每个样本的损失值,返回的结果是一个与输入样本数量相同的张量。
    • 'mean':(默认值)对每个样本的损失求平均值,返回一个标量值。
    • 'sum':对每个样本的损失求和,返回一个标量值。

优化算法

在这里,我们(使用学习率为0.1的小批量随机梯度下降作为优化算法)。
这与我们在线性回归例子中的相同,这说明了优化器的普适性。

trainer = torch.optim.SGD(net.parameters(), lr=0.1)

net.parameters() 是一个生成器,它会返回模型中所有需要学习的参数(如权重和偏置)。这些参数会被传递给优化器,以便优化器在训练过程中对它们进行更新。
torch.optim.SGD 是 PyTorch 中实现随机梯度下降优化算法的类。它接受模型的参数和一些超参数作为输入,用于更新模型的参数。

训练

接下来我们[调用] 之前(定义的训练函数来训练模型)。

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2291247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基础篇03-图像的基本运算

本节将简要介绍Halcon中有关图像的两类基本运算,分别是代数运算和逻辑运算。除此之外,还介绍几种特殊的代数运算。 目录 1.引言 2. 基本运算 2.1 加法运算 2.2 减法运算 2.3 乘法运算 2.4 除法运算 2.5 综合实例 3. 逻辑运算 3.1 逻辑与运算 …

工具的应用——安装copilot

一、介绍Copilot copilot是一个AI辅助编程的助手,作为需要拥抱AI的程序员可以从此尝试进入,至于好与不好,应当是小马过河,各有各的心得。这里不做评述。重点在安装copilot的过程中遇到了一些问题,然后把它总结下&…

Alibaba开发规范_编程规约之命名风格

文章目录 命名风格的基本原则1. 命名不能以下划线或美元符号开始或结束2. 严禁使用拼音与英文混合或直接使用中文3. 类名使用 UpperCamelCase 风格,但以下情形例外:DO / BO / DTO / VO / AO / PO / UID 等4. 方法名、参数名、成员变量、局部变量使用 low…

MATLAB中的IIR滤波器设计

在数字信号处理中,滤波器是消除噪声、提取特征或调整信号频率的核心工具。其中,无限脉冲响应(IIR)滤波器因其低阶数实现陡峭滚降的特性,被广泛应用于音频处理、通信系统和生物医学工程等领域。借助MATLAB强大的工具箱&…

vector容器(详解)

本文最后是模拟实现全部讲解,文章穿插有彩色字体,是我总结的技巧和关键 1.vector的介绍及使用 1.1 vector的介绍 https://cplusplus.com/reference/vector/vector/(vector的介绍) 了解 1. vector是表示可变大小数组的序列容器。…

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…

【VUE案例练习】前端vue2+element-ui,后端nodo+express实现‘‘文件上传/删除‘‘功能

近期在做跟毕业设计相关的数据后台管理系统,其中的列表项展示有图片展示,添加/编辑功能有文件上传。 “文件上传/删除”也是我们平时开发会遇到的一个功能,这里分享个人的实现过程,与大家交流谈论~ 一、准备工作 本次案例使用的…

使用真实 Elasticsearch 进行高级集成测试

作者:来自 Elastic Piotr Przybyl 掌握高级 Elasticsearch 集成测试:更快、更智能、更优化。 在上一篇关于集成测试的文章中,我们介绍了如何通过改变数据初始化策略来缩短依赖于真实 Elasticsearch 的集成测试的执行时间。在本期中&#xff0…

【R语言】函数

一、函数格式 如下所示: hello:函数名;function:定义的R对象是函数而不是其它变量;():函数的输入参数,可以为空,也可以包含参数;{}:函数体,如果…

VSCode插件Live Server

简介:插件Live Server能够实现当我们在VSCode编辑器里修改 HTML、CSS 或者 JavaScript 文件时,它都能自动实时地刷新浏览器页面,让我们实时看到代码变化的效果。再也不用手动刷新浏览器了,节省了大量的开发过程耗时! 1…

50. 正点原子官方系统镜像烧写实验

一、Windows下使用OTG烧写系统 1、在Windos使用NXP提供的mfgtool来向开发烧写系统。需要用先将开发板的USB_OTG接口连接到电脑上。 Mfgtool工具是向板子先下载一个Linux系统,然后通过这个系统来完成烧写工作。 切记!使用OTG烧写的时候要先把SD卡拔出来&…

扩散模型(三)

相关阅读: 扩散模型(一) 扩散模型(二) Latent Variable Space 潜在扩散模型(LDM;龙巴赫、布拉特曼等人,2022 年)在潜在空间而非像素空间中运行扩散过程,这…

it基础使用--5---git远程仓库

it基础使用–5—git远程仓库 1. 按顺序看 -git基础使用–1–版本控制的基本概念 -git基础使用–2–gti的基本概念 -git基础使用–3—安装和基本使用 -git基础使用–4—git分支和使用 2. 什么是远程仓库 在第一篇文章中,我们已经讲过了远程仓库,每个本…

Baklib如何改变内容管理平台的未来推动创新与效率提升

内容概要 在信息爆炸的时代,内容管理平台成为了企业和个人不可或缺的工具。它通过高效组织、存储和发布内容,帮助用户有效地管理信息流。随着技术的发展,传统的内容管理平台逐渐暴露出灵活性不足、易用性差等局限性,这促使市场需…

16.[前端开发]Day16-HTML+CSS阶段练习(网易云音乐五)

完整代码 网易云-main-left-rank&#xff08;排行榜&#xff09; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name&q…

ARM嵌入式学习--第十天(UART)

--UART介绍 UART(Universal Asynchonous Receiver and Transmitter)通用异步接收器&#xff0c;是一种通用串行数据总线&#xff0c;用于异步通信。该总线双向通信&#xff0c;可以实现全双工传输和接收。在嵌入式设计中&#xff0c;UART用来与PC进行通信&#xff0c;包括与监控…

Unity游戏(Assault空对地打击)开发(3) 摄像机的控制

详细步骤 打开My Assets或者Package Manager。 选择Unity Registry。 搜索Cinemachine&#xff0c;找到 Cinemachine包&#xff0c;点击 Install按钮进行安装。 关闭窗口&#xff0c;新建一个FreeLook Camera&#xff0c;如下。 接着新建一个对象Pos&#xff0c;拖到Player下面…

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(三)

目录 1 -> 生命周期 1.1 -> 应用生命周期 1.2 -> 页面生命周期 2 -> 资源限定与访问 2.1 -> 资源限定词 2.2 -> 资源限定词的命名要求 2.3 -> 限定词与设备状态的匹配规则 2.4 -> 引用JS模块内resources资源 3 -> 多语言支持 3.1 -> 定…

小程序-基础加强-自定义组件

前言 这次讲自定义组件 1. 准备今天要用到的项目 2. 初步创建并使用自定义组件 这样就成功在home中引入了test组件 在json中引用了这个组件才能用这个组件 现在我们来实现全局引用组件 在app.json这样使用就可以了 3. 自定义组件的样式 发现页面里面的文本和组件里面的文…

尝试ai生成figma设计

当听到用ai 自动生成figma设计时&#xff0c;不免好奇这个是如何实现的。在查阅了不少资料后&#xff0c;有了一些想法。参考了&#xff1a;在figma上使用脚本自动生成色谱 这篇文章提供的主要思路是&#xff1a;可以通过脚本的方式构建figma设计。如果我们使用ai 生成figma脚本…