OpenCV 版本不兼容导致的问题

news2025/2/1 22:38:45

问题和解决方案

今天运行如下代码,发生了意外的错误,代码如下,其中输入的 frame 来自于 OpenCV 开启数据流的读取

"""
cap = cv2.VideoCapture(RTSP_URL)
print("链接视频流完成")
while True:
    ret, frame = cap.read()
"""


def render_result_in_frame(frame, recognize_result: RecognizeResult):
    # 将 OpenCV 图像转换为 PIL 图像
    frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(frame_pil)
    for item in recognize_result:
        # 绘制矩形框
        draw.rectangle([(item.x1, item.y1), (item.x2, item.y2)],
                    outline=(0, 255, 0),
                    width=2)

        # 绘制中文文本
        text = f"姓名: {item.name}"
        draw.text((item.x1, item.y1 - 40),
                text,
                font=FONT,
                fill=(0, 255, 0, 0))  # fill 参数是颜色 (R, G, B, A)
    # 将 PIL 图像转换回 OpenCV 格式
    frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR)

    return frame

错误信息如下

...(略)
    person_image_rgb = cv2.cvtColor(person_image, cv2.COLOR_BGR2RGB)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
cv2.error: OpenCV(4.7.0) :-1: error: (-5:Bad argument) in function 'cvtColor'
> Overload resolution failed:
>  - src is not a numpy array, neither a scalar
>  - Expected Ptr<cv::UMat> for argument 'src'

查了很久也没有查到原因,因为这个函数输入是一个 opencv 读取的视频帧,忽然想到,在安装依赖的时候,我先安装了一次 opencv-python 的 4.11.0.86 版本,又安装了一次 opencv-python-headless 的 4.7.0 版本,这正好和错误信息中的 4.7.0 对应。

随后升级了 opencv-python-headless 的版本,问题就被解决了

原因分析

那么首先要搞懂的就是,opencv-python 和 opencv-python-headless 的关系是什么呢?

查阅了如下资料(【完整版】opencv-python-headless、opencv-python和opencv-contrib-python区别和联系),发现还有一个 opencv-contrib-python 的版本,三者的比较大体如下

  • opencv-python-headless:具备OpenCV核心图像与视频处理功能,像图像滤波、视频帧提取等,但无GUI功能,适合服务器端或无需显示图像的后台数据处理任务
  • opencv-python:拥有OpenCV完整核心功能,除处理图像视频外还支持GUI,能创建窗口显示图像、实现交互,适用于本地交互式开发与调试
  • opencv-contrib-python:涵盖核心功能及扩展模块,提供深度学习、高级特征提取等额外算法,适用于科研及需高级功能的开发场景

这三者有一个很坑的地方就是他们都会安装到 cv2 大路径下,并且相互有重叠的文件

那么当先安装 opencv-python 后,再安装另一个版本的 opencv-python-headless,就有可能发生 py 文件的覆盖,进而导致接口不兼容的问题

尽量安装单一版本;如果非要安装多个版本,要保证版本一致

以上只是个人的一些分析,如果有分析不正确的地方,欢迎在评论区留言

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2289492.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【视频+图文详解】HTML基础3-html常用标签

图文教程 html常用标签 常用标签 1. 文档结构 <!DOCTYPE html>&#xff1a;声明HTML文档类型。<html>&#xff1a;定义HTML文档的根元素。<head>&#xff1a;定义文档头部&#xff0c;包含元数据。<title>&#xff1a;设置网页标题&#xff0c;浏览…

【B站保姆级视频教程:Jetson配置YOLOv11环境(五)Miniconda安装与配置】

Jetson配置YOLOv11环境&#xff08;5&#xff09;Miniconda安装与配置 文章目录 0. Anaconda vs Miniconda in Jetson1. 下载Miniconda32. 安装Miniconda33. 换源3.1 conda 换源3.2 pip 换源 4. 创建环境5. 设置默认启动环境 0. Anaconda vs Miniconda in Jetson Jetson 设备资…

【PLL】杂散生成和调制

时钟生成 --》 数字系统 --》峰值抖动频率生成 --》无线系统 --》 频谱纯度、 周期信号的相位不确定性 随机抖动&#xff08;random jitter, RJ&#xff09;确定性抖动&#xff08;deterministic jitter,DJ&#xff09; 时域频域随机抖动积分相位噪声确定性抖动边带 杂散生成和…

游戏引擎 Unity - Unity 启动(下载 Unity Editor、生成 Unity Personal Edition 许可证)

Unity Unity 首次发布于 2005 年&#xff0c;属于 Unity Technologies Unity 使用的开发技术有&#xff1a;C# Unity 的适用平台&#xff1a;PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域&#xff1a;开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

【C++动态规划 离散化】1626. 无矛盾的最佳球队|2027

本文涉及知识点 C动态规划 离散化 LeetCode1626. 无矛盾的最佳球队 假设你是球队的经理。对于即将到来的锦标赛&#xff0c;你想组合一支总体得分最高的球队。球队的得分是球队中所有球员的分数 总和 。 然而&#xff0c;球队中的矛盾会限制球员的发挥&#xff0c;所以必须选…

python-leetcode-从中序与后序遍历序列构造二叉树

106. 从中序与后序遍历序列构造二叉树 - 力扣&#xff08;LeetCode&#xff09; # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right r…

Java实战:图像浏览器

文章目录 1. 实战概述2. 知识准备3. 实现步骤3.1 创建Java项目3.2 创建图像浏览器类3.2.1 声明变量与常量3.2.2 创建构造方法3.2.3 创建初始化界面方法3.2.4 创建处理事件方法3.2.5 创建主方法3.2.6 查看完整代码 3.3 运行程序&#xff0c;查看结果 4. 实战小结5. 扩展练习 1. …

I.MX6ULL 中断介绍上

i.MX6ULL是NXP&#xff08;原Freescale&#xff09;推出的一款基于ARM Cortex-A7内核的微处理器&#xff0c;广泛应用于嵌入式系统。在i.MX6ULL中&#xff0c;中断&#xff08;Interrupt&#xff09;是一种重要的机制&#xff0c;用于处理外部或内部事件&#xff0c;允许微处理…

(即插即用模块-特征处理部分) 十九、(NeurIPS 2023) Prompt Block 提示生成 / 交互模块

文章目录 1、Prompt Block2、代码实现 paper&#xff1a;PromptIR: Prompting for All-in-One Blind Image Restoration Code&#xff1a;https://github.com/va1shn9v/PromptIR 1、Prompt Block 在解决现有图像恢复模型时&#xff0c;现有研究存在一些局限性&#xff1a; 现有…

MySQL数据库(二)- SQL

目录 ​编辑 一 DDL (一 数据库操作 1 查询-数据库&#xff08;所有/当前&#xff09; 2 创建-数据库 3 删除-数据库 4 使用-数据库 (二 表操作 1 创建-表结构 2 查询-所有表结构名称 3 查询-表结构内容 4 查询-建表语句 5 添加-字段名数据类型 6 修改-字段数据类…

数据分析系列--⑦RapidMiner模型评价(基于泰坦尼克号案例含数据集)

一、前提 二、模型评估 1.改造⑥ 2.Cross Validation算子说明 2.1Cross Validation 的作用 2.1.1 模型评估 2.1.2 减少过拟合 2.1.3 数据利用 2.2 Cross Validation 的工作原理 2.2.1 数据分割 2.2.2 迭代训练与测试 ​​​​​​​ 2.2.3 结果汇总 ​​​​​​​ …

gentoo中利用ollama运行DeepSeek-R1

一、安装ollama gentoo linux中 1.安装步骤&#xff1a; Step1. #cd /usr/local/src Step2. #wget2 -o -V https://ollama.com/install.sh Setp3. #sh ./install.sh 2.ollama完成安装。查看ollama版本&#xff1a; 3.查看ollama服务运行状态&#xff1a; 二、安装&#xf…

【NEXT】网络编程——上传文件(不限于jpg/png/pdf/txt/doc等),或请求参数值是file类型时,调用在线服务接口

最近在使用华为AI平台ModelArts训练自己的图像识别模型&#xff0c;并部署了在线服务接口。供给客户端&#xff08;如&#xff1a;鸿蒙APP/元服务&#xff09;调用。 import核心能力&#xff1a; import { http } from kit.NetworkKit; import { fileIo } from kit.CoreFileK…

MySQL基本架构SQL语句在数据库框架中的执行流程数据库的三范式

MySQL基本架构图&#xff1a; MySQL主要分为Server层和存储引擎层 Server层&#xff1a; 连接器&#xff1a;连接客户端&#xff0c;获取权限&#xff0c;管理连接 查询缓存&#xff08;可选&#xff09;&#xff1a;在执行查询语句之前会先到查询缓存中查看是否执行过这条语…

minimind - 从零开始训练小型语言模型

大语言模型&#xff08;LLM&#xff09;领域&#xff0c;如 GPT、LLaMA、GLM 等&#xff0c;虽然它们效果惊艳&#xff0c; 但动辄10 Bilion庞大的模型参数个人设备显存远不够训练&#xff0c;甚至推理困难。 几乎所有人都不会只满足于用Lora等方案fine-tuing大模型学会一些新的…

小程序的协同工作与发布

1.小程序API的三大分类 2.小程序管理的概念&#xff0c;以及成员管理两个方面 3.开发者权限说明以及如何维护项目成员 4.小程序版本

计算机网络 笔记 网络层 3

IPv6 IPv6 是互联网协议第 6 版&#xff08;Internet Protocol Version 6&#xff09;的缩写&#xff0c;它是下一代互联网协议&#xff0c;旨在解决 IPv4 面临的一些问题&#xff0c;以下是关于 IPv6 的详细介绍&#xff1a; 产生背景&#xff1a; 随着互联网的迅速发展&…

python 语音识别

目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…

事务02之锁机制

锁机制 文章目录 锁机制一&#xff1a;MySQL锁的由来与分类1&#xff1a;锁机制的分类 二&#xff1a;共享锁与排他锁1&#xff1a;共享锁(S锁)2&#xff1a;排他锁(X锁)3&#xff1a;锁的释放 二&#xff1a;表级别锁1&#xff1a;元数据锁(了解)2&#xff1a;意向锁3&#xf…

Python NumPy(10):NumPy 统计函数

1 NumPy 统计函数 NumPy 提供了很多统计函数&#xff0c;用于从数组中查找最小元素&#xff0c;最大元素&#xff0c;百分位标准差和方差等。 1.1 numpy.amin() 和 numpy.amax() numpy.amin() 用于计算数组中的元素沿指定轴的最小值。 numpy.amin(a, axisNone, outNone, keep…