数据标注开源框架 Label Studio

news2025/1/29 14:09:42

数据标注开源框架 Label Studio

Label Studio 是一个开源的、灵活的数据标注平台,旨在帮助开发者和数据科学家轻松创建高质量的训练数据集。它支持多种类型的数据(如文本、图像、音频、视频等)以及复杂的标注任务(如分类、命名实体识别、边界框标注、语义分割等)。通过直观的用户界面和强大的 API 集成,Label Studio 为构建和训练机器学习模型提供了坚实的基础。

安装/启动

# 进入虚拟环境
conda activate label_studio

# 安装
pip install label-studio

# 启动,默认8080端口
label-studio start

# 后台启动
nohup label-studio start &

# 指定端口启动
label-studio start --port 9001

访问:http://localhost:8080

第一次访问,填写Email地址和登录密码创建登录账号,访问登录页

创建项目

点击右上角的Create按钮,弹出框上有三个Tab页面,代表创建项目的三个步骤。

  • 第一步,填写项目名称;

  • 第二步,数据导入。支持txt,csv等常见格式;

  • 第三步,设置标签。为了简化设置,你可以选择一个模板。Label Studio自带的模板支持的范围很广,常见的大类就有计算机视觉、自然语言处理、语音处理等,每个大类下面又分很多小类,例如自然语言处理大类下面有文本分类、关系抽取、机器翻译和文本摘要等。

选择了一个模板以后,可以根据自己的需求设置标签。两种方式设置标签:

  • Visual 可视化方式
  • Code 代码方式

可视化方式如下图,需要配置标注的文本字段的名称,如图中的 $reviewreview这个名称是步骤二中上传的文档里的其中一个字段的名称。

再看下图中的 Add choices 。此配置是数据标注的选项,默认有三个选项:正向、中性和负向。

以上两个配置好以后,就可以在右侧的 UI preview中看到标注人员的预览界面。给你一段文字和三个选项,你只需要用鼠标点击其中某一个或多个选项即可,也可以使用选项右上角的快捷键1、2、3。

代码方式采用 XML 格式,语法非常简单,本文不做重点介绍。

创建好以后的项目列表如下图

点击列表中某一项任务,如下图

集成机器学习后端

Label Studio ML 后端是一个SDK,可以包装您的机器学习代码并将其转换为Web服务器。Web服务器可以连接到正在运行的 Label Studio 实例以自动执行标签任务。Label Studio 提供了一个代码示例库,用户可以拿来使用或者自己扩展。

Label Studio 的机器学习( ML )后端,可以提供以下几个功能:

  • 预标注:在标注师人工标注之前,ML可提前预测标签作为参考;
  • 交互式标注:每标注完一个标签,就能更新完善ML模型,使模型更精准实时;
  • 模型评估和微调:标注师可以审查模型的准确性,对模型进行纠正。

MLLabel Studio 的交互流程是:

  • 用户打开任务
  • Label Studio发送请求给 ML后端
  • ML 后端对请求的数据进行预测
  • 预测结果返回给 Label Studio 并显示在 UI

启动后端

# 安装
git clone https://github.com/HumanSignal/label-studio-ml-backend.git
cd label-studio-ml-backend/
pip install -e .

# 启动示例中的机器学习后端,sklearn_text_classifier 是利用线性回归算法对文本进行分类的示例
cd /opt/label_studio/label-studio-ml-backend/label_studio_ml/examples/sklearn_text_classifier
label-studio-ml start ../sklearn_text_classifier

# 启动指定主机和端口
label-studio-ml start ../sklearn_text_classifier -p 9091 --host 0.0.0.0

# 验证后端是否启动成功
curl http://localhost:9090/

label-studio-ml start 启动命令在哪个路径下执行,模型文件 model.pkl 就会在哪个路径下更新,所以一定要在算法的后端目录下执行启动命令。

例如,如果在 examples 目录下执行 label-studio-ml start sklearn_text_classifier ,则 model.pkl 会保存在 examples目录下。

添加到 Label Studio

点击项目列表右上角的 Settings按钮

选择 Model选项卡,点击 Connect Model按钮

将后端服务的地址填进去,点击 Validate and Save 按钮。其中, Interactivate preannotations配置如果打开,表示允许以交互方式向机器学习的后端服务发送请求。

打开了Interactivate preannotations开关,会在任务界面的下面出现一个 Auto-Annotation的开关。

Interactivate preannotations 开关的作用是使 Label Studio 在标注过程中实时与 ML 后端进行交互,系统会动态地请求模型生成标注建议,并立即将这些建议展示给标注人员

点击 Validate and Save 按钮后,如果验证通过,会出现如下界面, Connected状态表示 Label Studio 和机器学习后端服务连接成功。

Start model training on annotation submission ****这个开关的意思是它可以让你实现一个主动学习(Active Learning)循环,即每当有新的标注提交时,系统会自动触发模型训练。即在任务界面点了 SubmitUpdate 按钮之后, Label Studio 会调用 ML 接口请求对模型进行训练,以达到对模型微调的效果。

预标注

选择 Annotation 选项卡, 打开预标注( Prelabeling )开关,表示在项目创建伊始,就会预先调用后端服务进行预测,并将预测保存。当然这只是预测操作,最终的标注结果还是要标注师点击 Submit按钮保存标注结果。

编写自己的后端

Label Studio ML 后端是一个SDK,可用于包装机器学习模型代码并将其转换为Web服务器。

首先创建自己的空 ML 后端

label-studio-ml create my_ml_backend

创建后的目录结构如下

my_ml_backend/
├── Dockerfile
├── .dockerignore
├── docker-compose.yml
├── model.py
├── _wsgi.py
├── README.md
├── requirements-base.txt
├── requirements-test.txt
├── requirements.txt
└── test_api.py
  • Dockerfile、**docker-compose.yml.dockerignore**用于使用Docker运行ML后端
  • model.py 是主文件,可以在其中实现自己的训练和推理逻辑
  • **_wsgi.py**是一个帮助文件,用于使用Docker运行ML后端,不需要修改它
  • requirements.txt 是放置Python依赖的地方
  • **requirements_base.txtrequirements_test.txt**是基本的依赖项,不需要修改它
  • **test_API.py**是放置模型测试的地方

覆盖**model.py**文件中的 predict 方法,实现自己的预测推理逻辑

def predict(self, tasks, context, **kwargs):
    """Make predictions for the tasks."""
    return predictions

覆盖**model.py文件中的fit**方法,实现自己的训练逻辑

def fit(self, event, data, **kwargs):
    """Train the model on the labeled data."""
    old_model = self.get('old_model')
    # write your logic to update the model
    self.set('new_model', new_model)

参考

  • Label Studio 官网

Label Studio Documentation — Quick start guide for Label Studio

  • 教程:使用 Label Studio 的 machine learning backend 进行辅助标注和训练

教程:使用 Label Studio 的 machine learning backend 进行辅助标注和训练 | OpenBayes 贝式计算

  • A.2【数据标注】:基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等

A.2【数据标注】:基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等_label studio关系抽取标注已有实体-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2282941.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OS Copilot功能测评:智能助手的炫彩魔法

简介: OS Copilot 是一款融合了人工智能技术的智能助手,专为Linux系统设计,旨在提升系统管理和运维效率。本文详细介绍了在阿里云ECS实例上安装和体验OS Copilot的过程,重点评测了其三个核心参数:-t(模式…

【豆包MarsCode 蛇年编程大作战】蛇形烟花

项目体验地址:项目体验地址 官方活动地址:活动地址 目录 【豆包MarsCode 蛇年编程大作战】蛇形烟花演示 引言 豆包 MarsCode介绍 项目准备 第一步:安装插件 第二步:点击豆包图标来进行使用豆包 使用豆包 MarsCodeAI助手实…

2013年蓝桥杯第四届CC++大学B组真题及代码

目录 1A:高斯日记(日期计算) 2B:马虎的算式(暴力模拟) 3C:第39级台阶(dfs或dp) 4D:黄金连分数(递推大数运算) 5E:前缀…

14.杂谈:领域知识库与知识图谱:概念、关系与重要性

文章目录 1. 领域知识库的概念2. 知识图谱的概念3. 领域知识库与知识图谱的关系与差异3.1 关系3.2 差异 4. 为什么要构建领域知识库?4.1 知识的集中管理与共享4.2 知识的标准化与规范化4.3 促进知识创新与应用 5. 为什么要进行知识融合?5.1 异构数据的整…

【GoLang】利用validator包实现服务端参数校验时自定义错误信息

在C/S架构下,服务端在校验请求参数时,若出现参数错误,要响应给客户端一个错误消息,通常我们会统一响应“参数错误”。 但是,如果只是一味的提示参数错误,我并不知道具体是哪个参数错了呀!能不能…

c#实现重启Explorer.exe并且启动某个命令

由于经常需要重启Explorer.exe 然后接着又需要马上启动一个命令行,于是干脆写一个程序,实现了此功能。 可以直接在运行中,或者在资源管理器中新建任务。 注意,下方的设置为应用程序,可以避免启动时出现黑框。 直接上代…

C语言自定义数据类型详解(一)——结构体类型(上)

什么是自定义数据类型呢?顾名思义,就是我们用户自己定义和设置的类型。 在C语言中,我们的自定义数据类型一共有三种,它们分别是:结构体(struct),枚举(enum),联合(union)。接下来,我…

绘制决策树尝试2 内含添加环境变量步骤

目录 step1 ai码 ai改 step2 下面就是环境配置问题 “ExecutableNotFound: failed to execute WindowsPath(‘dot’), make sure the Graphviz executables are on your systems’ PATH” dot -v愣是没有​编辑 graphviz安装指导 对于Windows用户: 对于Lin…

ChatGPT被曝存在爬虫漏洞,OpenAI未公开承认

OpenAI的ChatGPT爬虫似乎能够对任意网站发起分布式拒绝服务(DDoS)攻击,而OpenAI尚未承认这一漏洞。 本月,德国安全研究员Benjamin Flesch通过微软的GitHub分享了一篇文章,解释了如何通过向ChatGPT API发送单个HTTP请求…

【优选算法】10----无重复字符的最长子串

---------------------------------------begin--------------------------------------- 题目解析: 看到这一类题目,有没有那种一眼就感觉时要用到滑动窗口的感觉,铁子们? 讲解算法原理: 方法一: 暴力解法&#xff…

【模型】RNN模型详解

1. 模型架构 RNN(Recurrent Neural Network)是一种具有循环结构的神经网络,它能够处理序列数据。与传统的前馈神经网络不同,RNN通过将当前时刻的输出与前一时刻的状态(或隐藏层)作为输入传递到下一个时刻&…

开源鸿蒙开发者社区记录

lava鸿蒙社区可提问 Laval社区 开源鸿蒙项目 OpenHarmony 开源鸿蒙开发者论坛 OpenHarmony 开源鸿蒙开发者论坛

C语言中的|=代表啥意思?

在C语言中,| 是复合赋值运算符中的按位或赋值运算符。 其作用是将两个操作数按二进制位进行“或”运算,并将结果赋值给左操作数。例如,若有 x | y;,则等同于 x x | y;。其中,| 是按位或运算符,对两个操作数…

日志收集Day005

1.filebeat的input类型之filestream实战案例: 在7.16版本中已经弃用log类型,之后需要使用filebeat,与log不同,filebeat的message无需设置就是顶级字段 1.1简单使用: filebeat.inputs: - type: filestreamenabled: truepaths:- /tmp/myfilestream01.lo…

SVN客户端使用手册

目录 一、简介 二、SVN的安装与卸载 1. 安装(公司内部一般会提供安装包和汉化包,直接到公司内部网盘下载即可,如果找不到可以看下面的教程) 2. 查看SVN版本 ​编辑 3. SVN卸载 三、SVN的基本操作 1. 检出 2. 清除认证数据 3. 提交…

【深度学习基础】多层感知机 | 权重衰减

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重…

怎么实现Redis的高可用?

大家好,我是锋哥。今天分享关于【请介绍一些常用的Java负载均衡算法,以实现高并发和高可用性?】面试题。希望对大家有帮助; 怎么实现Redis的高可用? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 要实现 Redis 的高…

“AI视觉贴装系统:智能贴装,精准无忧

嘿,朋友们!今天我要跟你们聊聊一个特别厉害的技术——AI视觉贴装系统。这可不是普通的贴装设备,它可是融合了人工智能、计算机视觉和自动化控制等前沿科技的“智能贴装大师”。有了它,那些繁琐、复杂的贴装工作变得轻松又精准。来…

SQL基础、函数、约束(MySQL第二期)

p.s.这是萌新自己自学总结的笔记,如果想学习得更透彻的话还是请去看大佬的讲解 目录 SQL通用语法SQL数据类型SQL语句分类DDL数据库操作表操作-查询&创建典例表操作-修改字段表操作-改名&删除 DMLDML-插入(添加)数据DML-更新(修改)数据DML-删除数据 DQL基本…

hash路由、history路由

hash路由 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>Document</title><style>h…