【数学】概率论与数理统计(五)

news2025/1/14 19:54:46

文章目录

    • @[toc]
  • 二维随机向量及其分布
    • 随机向量
    • 离散型随机向量的概率分布律
      • 性质
      • 示例
        • 问题
        • 解答
    • 连续型随机向量的概率密度函数
    • 随机向量的分布函数
      • 性质
      • 连续型随机向量
        • 均匀分布
  • 边缘分布
    • 边缘概率分布律
    • 边缘概率密度函数
      • 二维正态分布
        • 示例
          • 问题
          • 解答
    • 边缘分布函数

二维随机向量及其分布


随机向量

  • 一般地,称 n n n个随机变量的整体 X = ( X 1 , X 2 , ⋯   , X n ) X = (X_{1}, X_{2}, \cdots, X_{n}) X=(X1,X2,,Xn) n n n维随机向量

离散型随机向量的概率分布律

  • 设二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的所有可能取值的集合为 G = {   ( x i , y j ) , i , j = 1 , 2 , ⋯   } G = \set{(x_{i}, y_{j}) , i, j = 1, 2, \cdots} G={(xi,yj),i,j=1,2,},并记 ( X , Y ) (X, Y) (X,Y)取各个可能取值的概率为 p i j = P {   X = x i , Y = y j   } , i , j = 1 , 2 , ⋯ p_{ij} = P\set{X = x_{i} , Y = y_{j}} , i, j = 1, 2, \cdots pij=P{X=xi,Y=yj},i,j=1,2,,称为二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的概率分布律,或称为 X X X Y Y Y的联合分布律

1

性质

  • p i j ≥ 0 ( i , j = 1 , 2 , ⋯   ) p_{ij} \geq 0 (i, j = 1, 2, \cdots) pij0(i,j=1,2,)

  • ∑ i ∑ j p i j = 1 \sum\limits_{i}\sum\limits_{j}{p_{ij}} = 1 ijpij=1

  • 满足上述 2 2 2个性质的数集 {   p i j , i , j = 1 , 2 , ⋯   } \set{p_{ij} , i, j = 1, 2, \cdots} {pij,i,j=1,2,}必可构成某二维离散型随机向量的一个分布律

示例

问题
  • 某盒内放有 12 12 12个大小相同的球,其中 5 5 5个红球, 4 4 4个白球, 3 3 3个黑球,第一次随机地摸出 2 2 2个球,观察后不放回,第二次再取出 3 3 3个球,以 X i X_{i} Xi表示第 i i i次取到红球的数目, i = 1 , 2 i = 1, 2 i=1,2,求 ( X 1 , X 2 ) (X_{1}, X_{2}) (X1,X2)的分布律
解答
  • P {   X 1 = i , X 2 = j   } = P {   X 1 = i   } P {   X 2 = j ∣ X 1 = i   } = C 5 i C 7 2 − i C 12 2 × C 5 − i j C 5 + i 3 − j C 10 3 ( i = 0 , 1 , 2 , j = 0 , 1 , 2 , 3 ) P\set{X_{1} = i , X_{2} = j} = P\set{X_{1} = i} P\set{X_{2} = j | X_{1} = i} = \frac{C_{5}^{i} C_{7}^{2 - i}}{C_{12}^{2}} \times \frac{C_{5 - i}^{j} C_{5 + i}^{3 - j}}{C_{10}^{3}} (i = 0, 1, 2 , j = 0, 1, 2, 3) P{X1=i,X2=j}=P{X1=i}P{X2=jX1=i}=C122C5iC72i×C103C5ijC5+i3j(i=0,1,2,j=0,1,2,3)

连续型随机向量的概率密度函数

  • 设二维随机向量 ( X , Y ) (X, Y) (X,Y),若存在非负可积函数 f ( x , y ) ( − ∞ < x , y < + ∞ ) f(x, y) (- \infty < x, y < + \infty) f(x,y)(<x,y<+),使得对任意实数对 a 1 ≤ b 1 a_{1} \leq b_{1} a1b1 a 2 ≤ b 2 a_{2} \leq b_{2} a2b2都有 P {   a 1 ≤ X ≤ b 1 , a 2 ≤ Y ≤ b 2   } = ∫ a 1 b 1 ∫ a 2 b 2 f ( x , y ) d x d y P\set{a_{1} \leq X \leq b_{1} , a_{2} \leq Y \leq b_{2}} = \int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}{f(x, y) dx dy} P{a1Xb1,a2Yb2}=a1b1a2b2f(x,y)dxdy,则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机向量,称 f ( x , y ) f(x, y) f(x,y) ( X , Y ) (X, Y) (X,Y)的概率密度函数或 X X X Y Y Y的联合概率密度函数,简称联合概率密度

随机向量的分布函数

  • ( X , Y ) (X, Y) (X,Y)是二维随机向量,对于任意实数 x x x y y y,称二元函数 F ( x , y ) = P {   X ≤ x , Y ≤ y   } F(x, y) = P\set{X \leq x , Y \leq y} F(x,y)=P{Xx,Yy}为二维随机向量 ( X , Y ) (X, Y) (X,Y)的分布函数,或随机变量 X X X Y Y Y的联合分布函数
  • 对于任意的实数 x 1 x_{1} x1 x 2 x_{2} x2 y 1 y_{1} y1 y 2 y_{2} y2 x 1 < x 2 x_{1} < x_{2} x1<x2 y 1 < y 2 y_{1} < y_{2} y1<y2随机点 ( X , Y ) (X, Y) (X,Y)落入矩形区域 G = {   ( X , Y ) ∣ x 1 < X ≤ x 2 , y 1 < Y ≤ y 2   } G = \set{(X, Y) | x_{1} < X \leq x_{2} , y_{1} < Y \leq y_{2}} G={(X,Y)x1<Xx2,y1<Yy2}内的概率可由分布函数表示为 P {   x 1 < X ≤ x 2 , y 1 < Y ≤ y 2   } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\set{x_{1} < X \leq x_{2} , y_{1} < Y \leq y_{2}} = F(x_{2}, y_{2}) - F(x_{2}, y_{1}) - F(x_{1}, y_{2}) + F(x_{1}, y_{1}) P{x1<Xx2,y1<Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)

性质

  • F ( x , y ) F(x, y) F(x,y)对每个自变量是单调不减函数,即对任意固定的 y y y,若 x 1 < x 2 x_{1} < x_{2} x1<x2,则 F ( x 1 , y ) ≤ F ( x 2 , y ) F(x_{1}, y) \leq F(x_{2}, y) F(x1,y)F(x2,y)

  • F ( − ∞ , y ) = lim ⁡ x → − ∞ F ( x , y ) = 0 F(- \infty, y) = \lim\limits_{x \rightarrow - \infty}{F(x, y)} = 0 F(,y)=xlimF(x,y)=0

  • F ( x , y ) F(x, y) F(x,y)对每个自变量都是右连续的,即 F ( x + 0 , y ) = F ( x , y ) F(x + 0, y) = F(x, y) F(x+0,y)=F(x,y) F ( x , y + 0 ) = F ( x , y ) F(x, y + 0) = F(x, y) F(x,y+0)=F(x,y)

  • 对于任意的 ( x 1 , y 1 ) (x_{1}, y_{1}) (x1,y1) ( x 2 , y 2 ) (x_{2}, y_{2}) (x2,y2),若 x 1 < x 2 x_{1} < x_{2} x1<x2 y 1 < y 2 y_{1} < y_{2} y1<y2,则 F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ≥ 0 F(x_{2}, y_{2}) - F(x_{2}, y_{1}) - F(x_{1}, y_{2}) + F(x_{1}, y_{1}) \geq 0 F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0

连续型随机向量

  • 对于二维连续型随机向量 ( X , Y ) (X, Y) (X,Y),可以证明,若 D D D x O y xOy xOy平面上一个可度量的平面区域,则有 P {   ( X , Y ) ∈ D   } = ∬ D f ( x , y ) d x d y P\set{(X, Y) \in D} = \iint\limits_{D}{f(x, y) dx dy} P{(X,Y)D}=Df(x,y)dxdy

  • 若概率密度 f ( x , y ) f(x, y) f(x,y)在点 ( x , y ) (x, y) (x,y)处连续,则有 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^{2}{F(x, y)}}{\partial{x} \partial{y}} = f(x, y) xy2F(x,y)=f(x,y)

均匀分布
  • 设二维随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度为

f ( x , y ) = { 1 S D , ( x , y ) ∈ D 0 , ( x , y ) ∉ D f(x, y) = \begin{cases} \cfrac{1}{S_{D}} , & (x, y) \in D \\ 0 , & (x, y) \notin D \end{cases} f(x,y)= SD1,0,(x,y)D(x,y)/D

  • 则称 ( X , Y ) (X, Y) (X,Y)服从区域 D D D上的均匀分布

边缘分布


边缘概率分布律

  • 二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的两个分量 X X X Y Y Y的概率分布律分别称为随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率分布律

  • p i ⋅ = P {   X = x i   } = ∑ j p i j ( i = 1 , 2 , ⋯   ) p_{i \cdot} = P\set{X = x_{i}} = \sum\limits_{j}{p_{ij}} (i = 1, 2, \cdots) pi=P{X=xi}=jpij(i=1,2,)

  • p ⋅ j = P {   Y = y j   } = ∑ i p i j ( j = 1 , 2 , ⋯   ) p_{\cdot j} = P\set{Y = y_{j}} = \sum\limits_{i}{p_{ij}} (j = 1, 2, \cdots) pj=P{Y=yj}=ipij(j=1,2,)

  • 由联合分布律可以唯一确定边缘分布律,反之则不然


边缘概率密度函数

  • 二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)关于其分量 X X X Y Y Y的概率密度分别记为 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y),分别称 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y) ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率密度函数,简称边缘概率密度

  • f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x, y) dy} fX(x)=+f(x,y)dy

  • f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x, y) dx} fY(y)=+f(x,y)dx

二维正态分布

  • 若二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度为

f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } ( − ∞ < x < + ∞ , − ∞ < y < + ∞ ) f(x, y) = \cfrac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} \exp\left\{- \cfrac{1}{2 (1 - \rho^{2})} \left[\cfrac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \cfrac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \cfrac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\} (- \infty < x < + \infty , - \infty < y < + \infty) f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}(<x<+,<y<+)

  • 其中 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 \sigma_{1} σ1 σ 2 \sigma_{2} σ2 ρ \rho ρ均为常数,且 σ 1 > 0 \sigma_{1} > 0 σ1>0 σ 2 > 0 \sigma_{2} > 0 σ2>0 ∣ ρ ∣ < 1 |\rho| < 1 ρ<1,则称 ( X , Y ) (X, Y) (X,Y)服从参数为 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 2 \sigma_{1}^{2} σ12 σ 2 2 \sigma_{2}^{2} σ22 ρ \rho ρ的二维正态分布,记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)
示例
问题
  • 求二维正态随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率密度
解答
  • ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 = ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 + ( 1 − ρ 2 ) ( x − μ 1 ) 2 σ 1 2 \frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \frac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \frac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}} = (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}})^{2} + (1 - \rho^{2}) \frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2=(σ2yμ2ρσ1xμ1)2+(1ρ2)σ12(xμ1)2

  • t = 1 1 − ρ 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) t = \frac{1}{\sqrt{1 - \rho^{2}}} (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}}) t=1ρ2 1(σ2yμ2ρσ1xμ1) d y = σ 2 1 − ρ 2 d t dy = \sigma_{2} \sqrt{1 - \rho^{2}} dt dy=σ21ρ2 dt

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = 1 2 π σ 1 σ 2 1 − ρ 2 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ + ∞ e − 1 2 ( 1 − ρ ) 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 d y = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ + ∞ e − t 2 2 d t = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 , − ∞ < x < + ∞ \begin{aligned} f_{X}(x) &= \int_{- \infty}^{+ \infty}{f(x, y) dy} \\ &= \cfrac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} \int_{- \infty}^{+ \infty}{e^{- \frac{1}{2 (1 - \rho)^{2}} (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}})^{2}} dy} \\ &= \cfrac{1}{2 \pi \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} \int_{- \infty}^{+ \infty}{e^{- \frac{t^{2}}{2}} dt} \\ &= \cfrac{1}{\sqrt{2 \pi} \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} , - \infty < x < + \infty \end{aligned} fX(x)=+f(x,y)dy=2πσ1σ21ρ2 1e2σ12(xμ1)2+e2(1ρ)21(σ2yμ2ρσ1xμ1)2dy=2πσ11e2σ12(xμ1)2+e2t2dt=2π σ11e2σ12(xμ1)2,<x<+

  • 由此可知,二维正态分布的随机向量 ( X , Y ) (X , Y) (X,Y)关于 X X X Y Y Y的边缘分布都是正态分布,且若 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X , Y) \sim N (\mu_{1} , \mu_{2} , \sigma_{1}^{2} , \sigma_{2}^{2} , \rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ),则 X ∼ N ( μ 1 , σ 1 2 ) X \sim N (\mu_{1} , \sigma_{1}^{2}) XN(μ1,σ12) Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N (\mu_{2} , \sigma_{2}^{2}) YN(μ2,σ22),由于边缘概率密度与参数 ρ \rho ρ无关,故对不同的二维正态分布,只要参数 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 \sigma_{1} σ1 σ 2 \sigma_{2} σ2对应相同,那么它们的边缘分布都是相同的,这一事实表明,虽然 X X X Y Y Y的联合概率密度决定边缘密度,但反之不真

边缘分布函数

  • 二维随机向量 ( X , Y ) (X, Y) (X,Y)关于两个分量 X X X Y Y Y的分布函数分别记为 F X ( x ) F_{X}(x) FX(x) F Y ( y ) F_{Y}(y) FY(y),分别称之为随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘分布函数

  • F X ( x ) = P {   X ≤ x   } = P {   X ≤ x , Y < + ∞   } = lim ⁡ y → + ∞ F ( x , y ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( u , y ) d y ] d u F_{X}(x) = P\set{X \leq x} = P\set{X \leq x , Y < + \infty} = \lim\limits_{y \rightarrow + \infty}{F(x, y)} = F(x, + \infty) = \int_{- \infty}^{x}{\left[\int_{- \infty}^{+ \infty}{f(u, y) dy}\right] du} FX(x)=P{Xx}=P{Xx,Y<+}=y+limF(x,y)=F(x,+)=x[+f(u,y)dy]du


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2276623.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识

目录 2.1 几何学 向量的内积和外积 旋转矩阵 旋转向量 四元数 李群和李代数 SO(3)上的 BCH 线性近似式 2.2 运动学 李群视角下的运动学 SO(3) t 上的运动学 线速度和加速度 扰动模型和雅可比矩阵 典型算例&#xff1a;对向量进行旋转 典型算例&#xff1a;旋转的复合 2.3 …

30_Redis哨兵模式

在Redis主从复制模式中,因为系统不具备自动恢复的功能,所以当主服务器(master)宕机后,需要手动把一台从服务器(slave)切换为主服务器。在这个过程中,不仅需要人为干预,而且还会造成一段时间内服务器处于不可用状态,同时数据安全性也得不到保障,因此主从模式的可用性…

苹果手机(IOS系统)出现安全延迟进行中如何关闭?

苹果手机&#xff08;IOS系统&#xff09;出现安全延迟进行中如何关闭&#xff1f; 一、设置二、隐私与安全性三、失窃设备保护关闭 一、设置 二、隐私与安全性 三、失窃设备保护关闭

【Oracle专栏】group by 和distinct 效率

Oracle相关文档&#xff0c;希望互相学习&#xff0c;共同进步 风123456789&#xff5e;-CSDN博客 1.背景 查阅资料&#xff1a; 1&#xff09;有索引情况下&#xff0c;group by和distinct都能使用索引&#xff0c;效率相同。 2&#xff09;无索引情况下&#xff0c;distinct…

linux:文件的创建/删除/复制/移动/查看/查找/权限/类型/压缩/打包,文本处理sed,awk

关于文件的关键词 创建 touch 删除 rm 复制 cp 权限 chmod 移动 mv 查看内容 cat(全部); head(前10行); tail(末尾10行); more,less,grep 查找 find 压缩 gzip ; bzip 打包 tar 编辑 sed 文本处理 awk 创建文件 格式&#xff1a; touch 文件名 删除文件 复制文…

day01-HTML-CSS——基础标签样式表格标签表单标签

目录 此篇为简写笔记下端1-3为之前笔记&#xff08;强迫症、保证文章连续性&#xff09;完整版笔记代码模仿新浪新闻首页完成审核不通过发不出去HTMLCSS1 HTML1.1 介绍1.1.1 WebStrom中基本配置 1.2 快速入门1.3 基础标签1.3.1 标题标签1.3.2 hr标签1.3.3 字体标签1.3.4 换行标…

哥大开发AI模型助力癌症和遗传病研究,近屿智能专注培养AI人才

近日&#xff0c;哥伦比亚大学瓦格洛斯医学院的研究团队在《自然》杂志上发表了一项重大研究成果。他们开发出一种名为“通用表达转换器”&#xff08;GET&#xff09;的新型AI模型&#xff0c;能够准确预测任何人类细胞中的基因活性&#xff0c;从而揭示细胞的内部工作机制。 …

9.4 visualStudio 2022 配置 cuda 和 torch (c++)

一、配置torch 1.Libtorch下载 该内容看了【Libtorch 一】libtorchwin10环境配置_vsixtorch-CSDN博客的博客&#xff0c;作为笔记用。我自己搭建后可以正常运行。 下载地址为windows系统下各种LibTorch下载地址_libtorch 百度云-CSDN博客 下载解压后的目录为&#xff1a; 2.vs…

基于spingbott+html+Thymeleaf的24小时智能服务器监控平台设计与实现

博主介绍&#xff1a;硕士研究生&#xff0c;专注于信息化技术领域开发与管理&#xff0c;会使用java、标准c/c等开发语言&#xff0c;以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年&#xff0c;拥有近12年的管理工作经验&#xff0c;拥有较丰富的技术架…

MySQL社区版下载及其环境配置(msi)

MySQL官网&#xff1a;https://www.mysql.com/ 1、进入官网 点击Downloads 找到MySQL Community (GPL) Downloads   然后点击MySQL Installer for Windows&#xff08;MySQL Community Server非向导式安装&#xff0c;而MySQL Installer for Windows有向导式安装&#x…

Linux-----进程通讯(消息队列)

目录 相关API 1.相关数据类型 mqd_t struct mq_attr struct timespec 2.相关系统调用接口 mq_open() mq_timedsend() && mq_send() mq_timedreceive() && mq_receive() mq_unlink() clock_gettime() 父子进程使用消息队列通讯 平行进程使用消息队列…

YOLOv8从菜鸟到精通(二):YOLOv8数据标注以及模型训练

数据标注 前期准备 先打开Anaconda Navigator&#xff0c;点击Environment&#xff0c;再点击new(new是我下载anaconda的文件夹名称)&#xff0c;然后点击创建 点击绿色按钮&#xff0c;并点击Open Terminal 输入labelimg便可打开它,labelimg是图像标注工具&#xff0c;在上篇…

mac homebrew配置使用

本文介绍mac上homebrew工具的安装、配置过程。homebrew功能类似于centos的yum&#xff0c;用于软件包的管理&#xff0c;使用上有命令的差异。 本次配置过程使用mac&#xff0c;看官方文档&#xff0c;在linux上也可以用&#xff0c;但我没试过&#xff0c;有兴趣的同学可以试试…

《使用 YOLOV8 和 KerasCV 进行高效目标检测》

《使用 YOLOV8 和 KerasCV 进行高效目标检测》 作者&#xff1a;Gitesh Chawda创建日期&#xff1a;2023/06/26最后修改时间&#xff1a;2023/06/26描述&#xff1a;使用 KerasCV 训练自定义 YOLOV8 对象检测模型。 &#xff08;i&#xff09; 此示例使用 Keras 2 在 Colab 中…

【Uniapp-Vue3】onShow和onHide钩子的对比和执行顺序

页面生命周期函数的执行顺序是onLoad>onShow>onReady&#xff0c;其中只有onReady中才能获取到DOM节点。 一、onShow函数 每一次的页面切入都会触发onShow函数。 import {onShow} from "dcloudio/uni-app"; onShow(()>{...}) 如果我点击“跳转页面1”再返…

GPT 系列论文精读:从 GPT-1 到 GPT-4

学习 & 参考资料 前置文章 Transformer 论文精读 机器学习 —— 李宏毅老师的 B 站搬运视频 自监督式学习(四) - GPT的野望[DLHLP 2020] 來自猎人暗黑大陆的模型 GPT-3 论文逐段精读 —— 沐神的论文精读合集 GPT&#xff0c;GPT-2&#xff0c;GPT-3 论文精读【论文精读】…

(STM32笔记)十二、DMA的基础知识与用法 第二部分

我用的是正点的STM32F103来进行学习&#xff0c;板子和教程是野火的指南者。 之后的这个系列笔记开头未标明的话&#xff0c;用的也是这个板子和教程。 DMA的基础知识与用法 二、DMA传输设置1、数据来源与数据去向外设到存储器存储器到外设存储器到存储器 2、每次传输大小3、传…

2024年11月架构设计师综合知识真题回顾,附参考答案、解析及所涉知识点(一)

软考高级系统架构设计师考试包含三个科目&#xff1a;信息系统综合知识、系统架构设计案例分析和系统架构设计论文。考试形式为机考。本文主要回顾2024年下半年(2024-11-10)系统架构设计师考试上午综合知识科目的选择题&#xff0c;同时附带参考答案、解析和所涉知识点。 由于机…

AI浪潮下的IT变革之路:机遇、挑战与重塑未来

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 AI浪…

【RTSP】使用webrtc播放rtsp视频流

一、简介 rtsp流一般是监控、摄像机的实时视频流,现在的主流浏览器是不支持播放rtsp流文件的,所以需要借助其他方案来播放实时视频,下面介绍下我采用的webrtc方案,实测可行。 二、webrtc-streamer是什么? webrtc-streamer是一个使用简单机制通过 WebRTC 流式传输视频捕获…