机器人手眼标定

news2025/3/13 21:13:10

机器人手眼标定

  • 一、机器人手眼标定
    • 1. 眼在手上标定基本原理
    • 2. 眼在手外标定基本原理
  • 二、眼在手外标定实验
  • 三、标定精度分析

一、机器人手眼标定

要实现由图像目标点到实际物体上抓取点之间的坐标转换,就必须拥有准确的相机内外参信息。其中内参是相机内部的基本参数,包括镜头焦距、畸变等。一般相机出厂时内参已标定完成,保存在相机内部。
相机外参表示的是机器人与相机之间的位姿转换关系(即手眼关系,因此相机外参的标定称之为机器人手眼标定)。机器人与相机在不同的使用场景下其相对位姿不固定,需要在工作现场进行标定才能获得相机与机器人之间的手眼关系。

由于机器人手眼标定会使用相机的内参,所以具有准确的内参是标定外参的前提。

机器人手眼标定的分类方式各不相同,根据相机相对于机器人的安装方式,将手眼标定分为两种:

  1. 相机独立于机器人固定在支架上,称为ETH(Eye to hand) 方式。
  2. 相机固定于机器人末端法兰上,称为EIH(Eye in hand) 方式。

同时,可使用多个随机标定板位姿或TCP 尖点触碰的方法添加标定点。
两者的主要区别在于:

  1. 多个随机标定板位姿:使用软件自动生成的轨迹点或手动添加的多个位姿,在每个位姿拍照并识别标定板角点,建立标定板、相机及机器人三者间的关系,其过程简单,标定精度高。
  2. TCP 尖点触碰:利用三点法确定标定板位姿后,建立标定板、相机及机器人三者间的关系。适用于机器人活动空间局促、无法使用上位机来控制和标定板无法安装等情况。
    分类方式如下图:
    ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/98e8965ab91a4c87a5f21affd197f3a0.png

1. 眼在手上标定基本原理

机器人末端通过固定架将相机固定,此时机器人末端法兰中心与相机光心之间的位姿相对固定,即下图中的未知变量X;机器人末端法兰中心相对于机器人基坐标系(Base)的位姿为已知量B;相机通过对标定板(calibration grid)进行拍照,获得相机光心和标定板上每个圆点之间的位姿关系,可得已知量C;标定板平放在相机视野可达区域,其相对于机器人基坐标之间的位姿关系为一固定值A;这样变量A、B、C、X 构成闭环关系。下列等式中,由于A 为固定值,将前两个等式合并,得到的新等式中只有X 为未知待求量。变换机器人末端位姿进行不同角度拍照,得到多组A、B、C 的值,利用这些数值进行拟合计算,得到最优的X 的值。
在这里插入图片描述:
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/e66883f0e3104df7873a099eb1a52462.jpeg

当使用TCP 触碰法标定时,标定板或者其它标定物放置在工作平面,机器人末端加装已知尺寸的TCP 尖点,触碰标定标定物,其中A、B、C 已知,则X 的值也可求得。
在这里插入图片描述
EIH 标定的是相机光心和机器人末端法兰中心之间的位姿关系。如果相机相对于机器人末端法兰中心坐标发生移动,对应的外参就会相应发生变化,此时需要重新标定外参。

2. 眼在手外标定基本原理

机器人末端通过法兰连接已知尺寸的标定板,可以得到标定板(calibration grid)上的每个标志点相对于机器人基坐标Base 的坐标A;通过相机拍照获得标定板上每个圆点的图像,可以得到相机光心相对于标定板上每个标志点的坐标B;相机光心和机器人基坐标(Base)之间的位姿关系X 为待求量。A、B 和X构成闭环,形成等式,可以在等式中求解未知数X。通过移动机器人,变换标定板相对于相机的位姿,可以得到多组等式,对这些等式的值进行拟合优化计算,最终得到最优的X 的值。位姿关系如下图所示。
在这里插入图片描述
当使用TCP 触碰法标定时,标定板放置在工作平面,机器人末端加装已知TCP 的尖点,触碰标定板圆点,其中A、B 已知,求解X 的值。
实际操作中,坐标A的获取有以下三种方式:

  1. 标定板到法兰末端位置关系已知(三点法或是已知连接件尺寸计算得到),则A 可以直接计算得到;
  2. 标定板到法兰末端位置关系未知,则通过标定板在标定过程中的一系列相对移动,通过数值方法计算得到标定板到法兰末端的位置关系,进而计算得到A;
  3. 标定板与机器人末端不固定,则可以通过已知tcp 坐标的尖点对标定板标志点进行触碰的方式计算得到A的数值。以上三种方式对应三种不同获取标定数据的方式。

ETH 方式标定的是相机光心和机器人基坐标之间的位姿关系。如果机器人基坐标或者相机发生移动,对应的外参就会相应发生变化,此时需要重新标定手眼关系。

二、眼在手外标定实验

下图为相机从上至下拍摄标定板,且计算出标定板圆心实验过程图片。
在这里插入图片描述
代码不便拿出来展示。其余实验过程此处省略。

三、标定精度分析

本人分别进行了采用多个随机标定板位姿的眼在手外标定和TCP尖点触碰进行标定实验。
多个随机标定板位姿标定方法:集成了3D相机采集数据、机器人轨迹规划、数据处理算法,自动化程度较高,但标定精度较低,平均在2.5mm左右。
TCP尖点触碰方法:需要人工实时指导调整位置,但标定精度较高,1mm以内。
经过多次相机引导机器人进行标定实验,总结下来 机械臂的运动重复性、光照条件、反射和阴影等环境因素、相机的内参、用于提取特征点的算法的准确性都会是影响标定精度的因素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2272337.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据挖掘——聚类

数据挖掘——聚类 聚类K-meansKNN VS K-meansK-Nearest Neighbors (KNN)K-means K中心算法PAM算法 K-modes算法——解决数据敏感的问题KMeans算法 ——解决初始点选择问题K-中心点层次方法AGNES算法——最小距离单链接全链接平均链接 聚类评估K均值和K中心点的优缺点层次化聚类…

web实操9——session

概念 数据保存在服务器HttpSession对象里。 session也是域对象,有setAttribute和getAttribute方法 快速入门 代码 获取session和塞入数据: 获取session获取数据: 请求存储: 请求获取: 数据正常打印&#xff1a…

GPT系统重大升级,开创国内先河:o1支持图片识别功能正式上线

文章目录 零、前言一、授权码登录体验优化:一步直达聊天界面二、全新“项目”功能:让工作更有条理三、语音功能升级:全新交互体验四、o1支持图片识别五、总结 零、前言 我是虚竹哥,目标是带十万人玩转ChatGPT。 亲爱的用户&…

unity 播放 序列帧图片 动画

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、方法一:代码控制播放序列帧1、设置图片属性2、创建Image组件3、简单的代码控制4、挂载代码并赋值 二、方法二:直接使用1.Image上添加…

VisionPro软件Image Stitch拼接算法

2D图像拼接的3种情景 1.一只相机取像位置固定,或者多只相机固定位置拍图,硬拷贝拼图,采用CopyRegion工具实现 2.一只或多只相机在多个位置拍照,相机视野互相重叠,基于Patmax特征定位后,无缝 拼图&#xff…

【大模型】7 天 AI 大模型学习

今天终于来到大模型学习的实战课了(虽然前面跳了2天的课),今天我们会一起学习 Llama 模型的运行、部署、微调 ~ 一、Llama 介绍 Llama 模型官网:官网 Llama 论文:论文 Llama 代码:代码 理念:Th…

小程序学习08—— 系统参数获取和navBar组件样式动态设置

一 系统信息的概念 uni-app提供了异步(uni.getSystemInfo)和同步(uni.getSystemInfoSync)的2个API获取系统信息。 success 返回参数说明: 参数分类说明statusBarHeight手机状态栏的高度system操作系统名称及版本。。。 二 自定义navbar 2.1 获取系统参数 代码展示…

STM32的LED点亮教程:使用HAL库与Proteus仿真

学习目标:掌握使用STM32 HAL库点亮LED灯,并通过Proteus进行仿真验证! 建立HAL库标准工程 1.新建工程文件夹 新建工程文件夹建议路径尽量为中文。建立文件夹的目的为了更好分类去管理项目工程中需要的各类工程文件。 首先需要在某个位置建立工…

密码学原理技术-第十一章-Hash Functions

文章目录 总结Why we need hash functionsDigital Signature with a Hash FunctionBasic Protocol for Digital Signatures with a Hash FunctionPrincipal input–output behavior of hash functions Security propertiesThe three security requirements of hash functionsWh…

【AI大模型系列】AI Agent与LangChain框架介绍(七)

目录 一、什么是AI Agent 二、什么是LangChain 三、LangChain的重要模块 3.1 Model I/O(模块输入输出) 3.2 Retrieval(检索) 3.3 Chains(链式调用) 3.4 Agents 3.5 Memory(记忆&#xff…

RabbitMQ 架构介绍:深入理解与应用

RabbitMQ 是一个开源的消息代理(Message Broker)软件,它实现了高级消息队列协议(AMQP),并提供了可靠的消息传递机制。RabbitMQ 广泛应用于分布式系统中,用于解耦系统组件、异步处理任务和实现消…

数据结构9.3 - 文件基础(C++)

目录 1 打开文件字符读写关闭文件 上图源自&#xff1a;https://blog.csdn.net/LG1259156776/article/details/47035583 1 打开文件 法 1法 2ofstream file(path);ofstream file;file.open(path); #include<bits/stdc.h> using namespace std;int main() {char path[]…

【C++】B2101 计算矩阵边缘元素之和

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目背景与描述题目描述输入格式输出格式输入输出样例说明与提示 &#x1f4af;分析与解决方案解法一&#xff1a;我的做法代码实现解题思路优点与局限性 解法二&#xff1…

【软考网工笔记】计算机基础理论与安全——计算机硬件知识

计算机分级存储体系 计算机分级存储体系目前最常用的是三级存储体系。 CPU——CaChe&#xff08;高速缓存&#xff09;——主存——辅存 其中 Cache 是用于解决存取速度不够快&#xff0c;辅存是用于解决存储容量不够大&#xff0c;二者结合可在容量和速度实现提升的情况下尽可…

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机&#xff08;ELM&#xff09; 极限学习机是一种单层前馈神经网络&#xff0c;具有训练速…

【MATLAB】【Simulink仿真】向模型中添加自定义子系统

一、子系统的创建 1、启动Simulink&#xff0c;选择【新建】——【空白子系统】——【创建子系统】 2、选择【浏览组件库】&#xff0c;创建使能子系统。 3、保存至当前工作目录。 二、建立模型仿真 1、启动Simulink&#xff0c;选择【新建】——【空白子系统】——【创建子系…

国产编辑器EverEdit - 使用技巧:变量重命名的一种简单替代方法

1 使用技巧&#xff1a;变量重命名的一种简单替代方法 1.1 应用场景 写过代码的都知道&#xff0c;经常添加功能的时候&#xff0c;是把别的地方的代码拷贝过来&#xff0c;改吧改吧&#xff0c;就能用了&#xff0c;改的过程中&#xff0c;就涉及到一个变量名的问题&#xff…

手持PDA终端,提升零售门店管理效率

随着科技的不断进步和零售行业的持续发展&#xff0c;手持PDA终端的应用将会越来越广泛。它将不断融合更多先进的技术和功能&#xff0c;为零售门店管理带来更加便捷、高效、智能的解决方案。 手持PDA终端是集成了数据处理、条码扫描、无线通信等多种功能于一体的便携式设备‌…

机器学习之逻辑回归算法、数据标准化处理及数据预测和数据的分类结果报告

逻辑回归算法、数据标准化处理及数据预测和数据的分类结果报告 目录 逻辑回归算法、数据标准化处理及数据预测和数据的分类结果报告1 逻辑回归算法1.1 概念理解1.2 算法导入1.3 算法优缺点 2 LogisticRegression理解2.1查看参数定义2.2 参数理解2.3 方法2.4基本格式 3 数据标准…

ICLR2017 | Ens | 深入研究可迁移的对抗样本和黑盒攻击

Delving Into Transferable Adversarial Examples And Black-Box Attacks 摘要-Abstract引言-Introduction对抗深度学习和可迁移性-Adversarial Deep Learning And Transferability对抗深度学习问题生成对抗样本的方法评估方法 非目标性对抗样本-Non-Targeted Adversarial Exam…