回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

news2025/3/14 0:21:50

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

一、极限学习机(ELM)
极限学习机是一种单层前馈神经网络,具有训练速度快、泛化性能好等优点。它的基本思想是随机选择输入权重并计算输出,这样可以大大简化训练过程。在ELM中,输入层到隐藏层的权重是随机生成的,而隐藏层到输出层的权重则是通过求解一个线性方程组来得到的。这种方法避免了传统神经网络在训练过程中需要反复调整权重的问题,从而提高了训练速度。

二、AdaBoost算法
AdaBoost(Adaptive Boosting)是一种集成学习方法,它通过组合多个弱学习器来提高模型的准确性。在AdaBoost中,每个弱学习器都会根据之前的分类或回归结果来调整样本的权重,使得后续的学习器更加关注那些被错误分类或预测的样本。这样,通过多轮迭代,AdaBoost能够逐步构建一个强学习器,从而提高整体的分类或回归性能。

三、ELM-Adaboost多输入单输出回归预测
将ELM与AdaBoost结合起来,可以构建一个高效的多输入单输出回归模型。这种模型的基本思想是:

使用ELM作为基本的回归模型,利用其训练速度快、泛化性能好的优点。
使用AdaBoost算法来集成多个ELM模型,通过调整样本权重和模型权重来优化整体回归性能。
在具体实现过程中,可以按照以下步骤进行:

数据准备与预处理:包括数据标准化等步骤,以确保输入数据的质量和一致性。
ELM模型训练:使用处理后的数据训练多个ELM模型,每个模型都可以看作是一个弱学习器。
AdaBoost集成:通过AdaBoost算法来集成多个ELM模型。在每一轮迭代中,根据之前的回归结果调整样本权重,并使用调整后的权重来训练新的ELM模型。同时,计算每个模型的权重,以便在最终的预测中进行加权组合。
模型评估与优化:使用测试数据集来评估模型的性能,并根据评估结果对模型进行优化。常见的评估指标包括均方误差(MSE)、决定系数(R²)等。
预测与应用:使用训练好的模型进行预测,并将预测结果应用于实际问题中。

程序设计

  • 完整代码:MATLAB实ELM-Adaboost多输入单输出回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  
addpath(genpath(pwd))
%% 导入数据
data =  readmatrix('day.csv');
data = data(:,3:16);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);





参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128267322?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128234920?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2272317.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MATLAB】【Simulink仿真】向模型中添加自定义子系统

一、子系统的创建 1、启动Simulink,选择【新建】——【空白子系统】——【创建子系统】 2、选择【浏览组件库】,创建使能子系统。 3、保存至当前工作目录。 二、建立模型仿真 1、启动Simulink,选择【新建】——【空白子系统】——【创建子系…

国产编辑器EverEdit - 使用技巧:变量重命名的一种简单替代方法

1 使用技巧:变量重命名的一种简单替代方法 1.1 应用场景 写过代码的都知道,经常添加功能的时候,是把别的地方的代码拷贝过来,改吧改吧,就能用了,改的过程中,就涉及到一个变量名的问题&#xff…

手持PDA终端,提升零售门店管理效率

随着科技的不断进步和零售行业的持续发展,手持PDA终端的应用将会越来越广泛。它将不断融合更多先进的技术和功能,为零售门店管理带来更加便捷、高效、智能的解决方案。 手持PDA终端是集成了数据处理、条码扫描、无线通信等多种功能于一体的便携式设备‌…

机器学习之逻辑回归算法、数据标准化处理及数据预测和数据的分类结果报告

逻辑回归算法、数据标准化处理及数据预测和数据的分类结果报告 目录 逻辑回归算法、数据标准化处理及数据预测和数据的分类结果报告1 逻辑回归算法1.1 概念理解1.2 算法导入1.3 算法优缺点 2 LogisticRegression理解2.1查看参数定义2.2 参数理解2.3 方法2.4基本格式 3 数据标准…

ICLR2017 | Ens | 深入研究可迁移的对抗样本和黑盒攻击

Delving Into Transferable Adversarial Examples And Black-Box Attacks 摘要-Abstract引言-Introduction对抗深度学习和可迁移性-Adversarial Deep Learning And Transferability对抗深度学习问题生成对抗样本的方法评估方法 非目标性对抗样本-Non-Targeted Adversarial Exam…

在IDEA中如何用git拉取远程某一分支的代码

想要在idea中拉取远程某一分支的代码,我们可以在idea中使用git命令 1.选择idea的Terminal窗口 2.使用git -v 命令查看一下git的版本,顺便测试一下能否使用git命令(不能使用的话需要在idea中进行相关配置) 3.使用 git fetch命令更新…

【博主推荐】 Microi吾码开源低代码平台,快速建站,提高开发效率

🍬引言 🍬什么是低代码平台? 低代码平台(Low-Code Platform)是一种使开发人员和业务用户可以通过图形化界面和少量的编程来创建应用程序的开发工具。与传统的编程方式相比,低代码平台大大简化了开发过程&a…

基于51单片机(STC32G12K128)和8X8彩色点阵屏(WS2812B驱动)的小游戏《贪吃蛇》

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、定时器02、矩阵按键模块3、8X8彩色点阵屏 四、主函数总结 系列文章目录 前言 《贪吃蛇》,一款经典的、怀旧的小游戏,单片机入门必写程序。 以《贪吃蛇》为载体,熟悉各种屏幕…

【开源】创建自动签到系统—QD框架

1. 介绍 QD是一个 基于 HAR 编辑器和 Tornado 服务端的 HTTP 定时任务自动执行 Web 框架。 主要通过抓包获取到HAR来制作任务模板,从而实现异步响应和发起HTTP请求 2. 需要环境 2.1 硬件需求 CPU:至少1核 内存:推荐 ≥ 1G 硬盘:推…

【区块链】零知识证明基础概念详解

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 零知识证明基础概念详解引言1. 零知识证明的定义与特性1.1 基本定义1.2 三个核心…

豆包ai 生成动态tree 增、删、改以及上移下移 html+jquery

[豆包ai 生成动态tree 增、删、改以及上移下移 htmljquery) 人工Ai 编程 推荐一Kimi https://kimi.moonshot.cn/ 推荐二 豆包https://www.doubao.com/ 实现效果图 html 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF…

Redis(一)基本特点和常用全局命令

目录 一、Redis 的基本特点 1、速度快&#xff08;但空间有限&#xff09; 2、储存键值对的“非关系型数据库” 3、 功能丰富 4、 支持集群 5、支持持久化 6、主从复制架构 二、Redis 的典型应用场景 1、作为存储热点数据的缓存 2、作为消息队列服务器 3、作为把数据…

SpringMVC(三)请求

目录 一、RequestMapping注解 1.RequestMapping的属性 实例 1.在这里创建文件&#xff0c;命名为Test: 2.复现-返回一个页面&#xff1a; 创建test界面&#xff08;随便写点什么&#xff09;&#xff1a; Test文件中编写&#xff1a; ​编辑 运行&#xff1a; 3.不返回…

K8s集群平滑升级(Smooth Upgrade of K8S Cluster)

简介&#xff1a; Kubernetes ‌ &#xff08;简称K8s&#xff09;是一个开源的容器编排和管理平台&#xff0c;由Google开发并维护。它最初是为了解决谷歌内部大规模容器管理的问题而设计的&#xff0c;后来在2014年开源&#xff0c;成为云原生技术的核心组成部分。‌‌1 K8…

NO.1 《机器学习期末复习篇》以题(问答题)促习(人学习),满满干huo,大胆学大胆补!

目录 一、新手初学&#xff1f;该如何区分[人工智能] [机器学习] [深度学习]&#xff1f; [1]浅谈一下我的理解 [2]深度交流一下 人工智能&#xff08;AI, Artificial Intelligence&#xff09; 机器学习&#xff08;ML, Machine Learning&#xff09; 深度学习&#xff0…

零基础也能建站: 使用 WordPress 和 US Domain Center 轻松五步创建网站 (无需编程)

创建一个网站可能听起来很复杂&#xff0c;但只要使用正确的工具&#xff0c;你可以通过五个简单步骤构建一个专业网站 — — 无需编写任何代码&#xff01;在本教程中&#xff0c;我们将使用 WordPress 和 US Domain Center 指导你完成整个过程。完成后&#xff0c;你将拥有一…

pdf预览 报:Failed to load module script

pdf 预览报&#xff1a; Failed to load module script: Expected a JavaScript module script but the server responded with a MIME type of “application/octet-stream”. Strict MIME type checking is enforced for module scripts per HTML spec. 报错原因&#xff1a…

【JVM】总结篇之对象内存布局 执行引擎

文章目录 对象内存布局对象的实例化对象的内存布局对象的方问定位 执行引擎 对象内存布局 对象的实例化 new对象流程&#xff1f;&#xff08;龙湖地产&#xff09; 对象创建方法&#xff0c;对象的内存分配。&#xff08;360安全&#xff09; 1.判断对象对应的类是否加载、链…

力扣hot100——动态规划 多维动态规划

前言&#xff1a;题太多了TAT&#xff0c;只贴了部分我觉得比较好的题 32. 最长有效括号 class Solution { public:int longestValidParentheses(string s) {int n s.size();s " " s;vector<int> dp(n 1, 0);int ans 0;for (int i 2; i < n; i) {if…

leecode1143.最长公共子序列

这道题目和最长重复子数组是一个类型的不同之处在于text1[i]!text2[j]时dp[i][j]时他的值是继承上一行或上一列的最大值&#xff0c;二者dp数组的含义也不一样&#xff0c;这里的dp[i][j]表示的是以text[i]和text2[j]为结尾的子序列最大长度&#xff0c;这也是导致两种问题当判…