教程:从pycharm基于anaconda构建机器学习环境并运行第一个 Python 文件

news2025/1/3 10:43:10

1. 安装 PyCharm

  1. 访问 PyCharm 官方网站:https://www.jetbrains.com/pycharm/。
  2. 下载社区版(免费)或专业版(收费,提供更多功能)。
  3. 按照操作系统的安装指导安装 PyCharm。
  4. 安装后打开 PyCharm,并根据提示设置初始环境。

2. 安装 Anaconda

  1. 访问 Anaconda 官方网站:https://www.anaconda.com/。

  2. 下载适合您操作系统的版本。
    在这里插入图片描述

  3. 按照安装指导安装 Anaconda:

    • 确保选中将 Anaconda 加入到系统的 PATH(可选,常许可选)。
  4. 通过打开窗口或命令控制口输入以验证安装:

    conda --version
    

3. 创建用于机器学习的虚拟环境

  1. 打开命令控制口或窗口。
  2. 通过下列命令创建一个新的虚拟环境:
    conda create -n ml_env python=3.9
    
    • ml_env 换成您喜欢的环境名称。
    • 3.9 换成您需要的 Python 版本(如 3.10)。
  3. 启用刚创建的虚拟环境:
    • Windows 上:
      conda activate ml_env
      
    • macOS/Linux 上:
      source activate ml_env
      
  4. 安装基础机器学习库:
    conda install numpy pandas matplotlib scikit-learn
    
    • 如需学习深度学习,可添加 TensorFlow 或 PyTorch:
      conda install tensorflow
      # 或
      conda install pytorch torchvision torchaudio -c pytorch
      

4. 在 PyCharm 中配置虚拟环境

  1. 打开 PyCharm,创建一个新项目:
    • 进入 File > New Project
    • 选择项目位置。
  2. 设置项目的 Python 解释器为虚拟环境:
    • 进入 File > Settings (macOS 为 Preferences) > Project > Python Interpreter
    • 点击驱动图标,选择 Add Interpreter > Conda Environment > Existing Environment
    • 选择您虚拟环境中的 Python 执行文件:
      • Windows 上:C:\Users\YourUsername\Anaconda3\envs\ml_env\python.exe
      • macOS/Linux 上:~/anaconda3/envs/ml_env/bin/python
  3. 点击 OK 保存设置。

5. 写作并运行您的第一个 Python 文件

  1. 创建一个新的 Python 文件:
    • 右键 PyCharm 中项目面板上的项目文件夹。
    • 选择 New > Python File,并为文件命名,如 first_ml_script.py
  2. 在文件中写入一个简单脚本:
    import numpy as np
    import pandas as pd
    from sklearn.linear_model import LinearRegression
    
    # 示例数据
    X = np.array([[1], [2], [3], [4], [5]])
    y = np.array([1, 4, 9, 16, 25])
    
    # 线性回归模型
    model = LinearRegression()
    model.fit(X, y)
    
    print("模型系数:", model.coef_)
    print("模型截距:", model.intercept_)
    
  3. 运行脚本:
    • 在项目面板中右键文件,选择 Run ‘first_ml_script’
    • 或者点击右上角的绿色跑按钮。

6. 验证您的环境

  • 如果设置正确,您应该能在 PyCharm 的输出面板中看到脚本的输出。
  • 示例输出:
    模型系数: [6.]
    模型截距: -7.0
    

恭喜您!您已成功安装 PyCharm 和 Anaconda,创建了一个用于机器学习的虚拟环境,并运行了第一个 Python 文件!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2268537.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

记录一下图像处理的基础知识

记录一下自己学习的图像处理的基础知识。 一、图像的文件格式以及常用的图像空间 1、文件格式 常见的图像文件格式有 jpg, png, bmp, gif (1)jpg:有损压缩算法,大幅减小文件大小,便于存储和传输,兼容性…

0030.停车场车位预约管理系统+论文

一、系统说明 基于springbootvueelementui开发的停车场车位预约管理系统,系统功能齐全, 代码简洁易懂,适合小白学编程。 二、系统架构 前端:vue| elementui 后端:springboot | mybatis 环境:jdk1.8 | mysql8.0 | maven 三、代…

SpringCloudAlibaba实战入门之路由网关Gateway断言(十二)

上一节课中我们初步讲解了网关的基本概念、基本功能,并且带大家实战体验了一下网关的初步效果,这节课我们继续学习关于网关的一些更高级有用功能,比如本篇文章的断言。 一、网关主要组成部分 上图中是核心的流程图,最主要的就是Route、Predicates 和 Filters 作用于特定路…

Postman[4] 环境设置

作用:不同的环境可以定义不同的参数,在运行请求时可以根据自己的需求选择需要的环境 1.创建Environment 步骤: Environment-> ->命名->添加环境变量 2.使用Environment 步骤:Collection- >右上角选择需要的环境

【PCIe 总线及设备入门学习专栏 4.5 -- PCIe Message and PCIe MSI】

文章目录 PCIe Message 与 MSIPCIe Message 和 MSI 的作用与关系MSI 的配置与寄存器MSI 和 ARM GIC 的关系示例:MSI 在 ARM GIC 的实际应用总结 PCIe Message 与 MSI 本文将介绍 PCIe message 的作用以及message 与 MSI 的关系,再介绍 MSI 如何配置以及…

jquery-validate在前端数据校验中的应用以及remote异步调用实践-以若依为例

目录 前言 一、关于Jquery Validate组件 1、validate是什么 2、内置验证方式及触发方式 3、自定义验证规则 二、基本验证实战以及Remote验证 1、基本验证实现 2、remote校验方式 三、总结 前言 随着技术的不断演进,在我们的日常开发过程中,大家一…

连锁餐饮行业数据可视化分析方案

引言 随着连锁餐饮行业的迅速发展,市场竞争日益激烈。企业需要更加精准地把握运营状况、消费者需求和市场趋势,以制定科学合理的决策,提升竞争力和盈利能力。可视化数据分析可以帮助连锁餐饮企业整合多源数据,通过直观、动态的可…

WPF 样式

WPF 有自己的样式设置系统&#xff0c;也自带类似 Winform 的默认样式。默认样式比较一般&#xff0c;我们可以使用下面几种方式自定义好看的 wpf 样式。 1. 本地直接设置 比如更改按钮的背景色和字体颜色&#xff0c; <Grid><StackPanel Orientation"Horizon…

RabbitMQ实现生产者消费者

一.启动MQ 注意管理员身份进入cmd才行,我这里是在本地安装的MQ,推荐使用虚拟机安装 二.思路 官方解释RabbitMQ结构: 自我理解RabbitMQ结构: 其实RabbitMQ的服务器就像邮局一样,我们的生产者和消费者对于这个服务器来说都是消费者,因为服务器都可以向两者发送消息 环境准备 …

虚拟机用网线连其他设备(ROS多机网络配置)

电脑配置 把局域网的网线插入电脑&#xff0c;点击这边 配置以太网的IP 比如说我ROS主机的IP想设为192.168.144.10&#xff0c;那我笔记本的以太网IP可以设为192.168.144.8。 假设还有另外一个电脑&#xff08;ROS从机&#xff09;&#xff0c;他的IP被设置未192.168.144.4…

VIM: Vision Mamba基于双向状态空间模型的高效视觉表示学习

这篇文章的主要内容可以概括如下&#xff1a; 背景与动机&#xff1a; 近年来&#xff0c;状态空间模型&#xff08;SSM&#xff09;在长序列建模中展现出巨大潜力&#xff0c;尤其是Mamba模型在硬件感知设计上的高效性。 然而&#xff0c;现有的SSM模型在处理视觉数据时面临…

整合版canal ha搭建--基于1.1.4版本

开启MySql Binlog&#xff08;1&#xff09;修改MySql配置文件&#xff08;2&#xff09;重启MySql服务,查看配置是否生效&#xff08;3&#xff09;配置起效果后&#xff0c;创建canal用户&#xff0c;并赋予权限安装canal-admin&#xff08;1&#xff09;解压 canal.admin-1…

tokenizer、tokenizer.encode、tokenizer.encode_plus比较

一、概念 在我们使用Transformers库进行自然语言处理任务建模的过程中&#xff0c;基本离不开Tokenizer类。我们需要这些Tokenizer类来帮助我们加载预训练模型的分词模块&#xff0c;并将文本转化为预训练模型可接受的输入格式。 而在实际建模的实践中&#xff0c;我们参考优秀…

基于深度学习(HyperLPR3框架)的中文车牌识别系统-搭建开发环境

本篇内容为搭建开发环境。包括&#xff1a;python开发环境&#xff0c;Qt/C开发环境&#xff0c;以及用到的各个库的安装和配置。 一、Python开发环境搭建与配置 1、下载并安装Anaconda 我没有用最新的版本&#xff0c;安装的是 Anaconda3-2021.05-Windows-x86_64.exe&#…

Secured Finance 与 Parasail 在流动性质押领域开展合作

Secured Finance 宣布与 Parasail 达成战略合作&#xff0c;标志着生态在推进 DePIN 及人工智能生态系统能力的重要里程碑。此次合作将 Parasail 卓越的质押方案与 Secured Finance 在去中心化贷款和稳定币协议方面的专业能力相结合&#xff0c;为 Filecoin 生态系统内的创新金…

计算机网络 (8)物理层的传输方式

一、串行传输与并行传输 串行传输 定义&#xff1a;串行传输是一种数据传输方式&#xff0c;指的是逐位地按照顺序传输数据。在串行传输中&#xff0c;数据位逐个按照一定的顺序进行传输&#xff0c;可以通过单条线路或信道进行。特点&#xff1a; 逐位传输&#xff1a;串行传输…

LabVIEW 中 NI Vision 模块的IMAQ Create VI

IMAQ Create VI 是 LabVIEW 中 NI Vision 模块&#xff08;NI Vision Development Module&#xff09;的一个常用 VI&#xff0c;用于创建一个图像变量。该图像变量可以存储和操作图像数据&#xff0c;是图像处理任务的基础。 ​ 通过以上操作&#xff0c;IMAQ Create VI 是构建…

第 29 章 - ES 源码篇 - 网络 IO 模型及其实现概述

前言 本文介绍了 ES 使用的网络模型&#xff0c;并介绍 transport&#xff0c;http 接收、响应请求的代码入口。 网络 IO 模型 Node 在初始化的时候&#xff0c;会创建网络模块。网络模块会加载 Netty4Plugin plugin。 而后由 Netty4Plugin 创建对应的 transports&#xff0…

【Spring MVC 核心机制】核心组件和工作流程解析

在 Web 应用开发中&#xff0c;处理用户请求的逻辑常常会涉及到路径匹配、请求分发、视图渲染等多个环节。Spring MVC 作为一款强大的 Web 框架&#xff0c;将这些复杂的操作高度抽象化&#xff0c;通过组件协作简化了开发者的工作。 无论是处理表单请求、生成动态页面&#x…

模型选择+过拟合欠拟合

训练误差和泛化误差 训练误差&#xff1a;模型在训练数据上的误差 泛化误差&#xff1a;模型在新数据上的误差 验证数据集&#xff1a;一个用来评估模型好坏的数据集 例如拿出50%的数据作为训练 测试数据集&#xff1a;只能用一次 K则交叉验证 在没有足够数据时使用 算法…