一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类

news2025/1/1 20:08:01

机器学习实战通常是将理论与实践结合,通过实际的项目或案例,帮助你理解并应用各种机器学习算法。下面是一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类。我们将通过该数据集来演示数据预处理、模型训练、评估和预测的全过程。

 访问更多内容来源 https://ai.tmqcjr.com

1. 安装所需库

首先,确保你已安装了scikit-learnmatplotlib等库,如果没有,请通过以下命令安装:

 

bash

复制代码

pip install scikit-learn matplotlib

2. 机器学习实战例程

导入必要的库
 

python

复制代码

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix, accuracy_score

加载数据集

我们使用Scikit-Learn自带的鸢尾花数据集,这是一个经典的机器学习数据集。

 

python

复制代码

# 加载鸢尾花数据集 iris = load_iris() X = iris.data # 特征数据(花瓣和萼片的长度和宽度) y = iris.target # 标签数据(花的种类)

数据探索

在开始训练模型之前,我们可以对数据进行简单的探索,比如查看数据的维度和前几行。

 

python

复制代码

# 查看数据集的结构 print(f"数据集的特征名称: {iris.feature_names}") print(f"数据集的标签名称: {iris.target_names}") print(f"数据集的特征形状: {X.shape}") print(f"数据集的标签形状: {y.shape}") # 查看前5行数据 print(f"特征数据:\n{X[:5]}") print(f"标签数据:\n{y[:5]}")

数据划分

我们将数据集划分为训练集和测试集,通常使用70%训练,30%测试的比例。

 

python

复制代码

# 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) print(f"训练集的样本数量: {X_train.shape[0]}") print(f"测试集的样本数量: {X_test.shape[0]}")

数据预处理

在使用机器学习模型之前,通常需要对数据进行标准化处理,以便提高模型的性能。

 

python

复制代码

# 数据标准化:将特征缩放至均值为0,方差为1的标准正态分布 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)

训练模型

我们将训练多个机器学习模型进行比较。这里使用常见的几种分类模型:K近邻(KNN)、支持向量机(SVM)、决策树和随机森林。

1. K近邻(KNN)
 

python

复制代码

# 初始化KNN模型并训练 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 在测试集上评估模型 y_pred_knn = knn.predict(X_test) print("KNN分类报告:") print(classification_report(y_test, y_pred_knn)) print(f"KNN的准确率: {accuracy_score(y_test, y_pred_knn)}")

2. 支持向量机(SVM)
 

python

复制代码

# 初始化SVM模型并训练 svm = SVC(kernel='linear') svm.fit(X_train, y_train) # 在测试集上评估模型 y_pred_svm = svm.predict(X_test) print("SVM分类报告:") print(classification_report(y_test, y_pred_svm)) print(f"SVM的准确率: {accuracy_score(y_test, y_pred_svm)}")

3. 决策树(Decision Tree)
 

python

复制代码

# 初始化决策树模型并训练 dt = DecisionTreeClassifier(random_state=42) dt.fit(X_train, y_train) # 在测试集上评估模型 y_pred_dt = dt.predict(X_test) print("决策树分类报告:") print(classification_report(y_test, y_pred_dt)) print(f"决策树的准确率: {accuracy_score(y_test, y_pred_dt)}")

4. 随机森林(Random Forest)
 

python

复制代码

# 初始化随机森林模型并训练 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train) # 在测试集上评估模型 y_pred_rf = rf.predict(X_test) print("随机森林分类报告:") print(classification_report(y_test, y_pred_rf)) print(f"随机森林的准确率: {accuracy_score(y_test, y_pred_rf)}")

评估模型

使用classification_report来评估模型的性能,显示精确度(Precision)、召回率(Recall)和F1-score。accuracy_score则显示整体的分类准确率。

 

python

复制代码

# 显示每个模型的准确率 models = ['KNN', 'SVM', '决策树', '随机森林'] accuracies = [ accuracy_score(y_test, y_pred_knn), accuracy_score(y_test, y_pred_svm), accuracy_score(y_test, y_pred_dt), accuracy_score(y_test, y_pred_rf) ] for model, accuracy in zip(models, accuracies): print(f"{model}的准确率: {accuracy}")

混淆矩阵

为了进一步分析模型的分类效果,可以绘制混淆矩阵。

 

python

复制代码

# 绘制混淆矩阵 def plot_confusion_matrix(cm, classes): plt.figure(figsize=(6, 6)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('Confusion Matrix') plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.xlabel('Predicted label') plt.ylabel('True label') plt.tight_layout() # KNN模型的混淆矩阵 cm_knn = confusion_matrix(y_test, y_pred_knn) plot_confusion_matrix(cm_knn, iris.target_names) # 显示图形 plt.show()

预测新数据

最后,我们可以使用训练好的模型对新的数据进行预测。

 

python

复制代码

# 使用KNN模型对新样本进行预测 new_data = np.array([[5.1, 3.5, 1.4, 0.2]]) # 一个新的样本(鸢尾花特征) new_data = scaler.transform(new_data) # 标准化 prediction = knn.predict(new_data) print(f"预测的花种类: {iris.target_names[prediction]}")

3. 模型总结

通过上述步骤,我们完成了以下内容:

  1. 数据加载与预处理:加载鸢尾花数据集并进行标准化处理。
  2. 模型训练与评估:训练了4个常见的机器学习模型(KNN、SVM、决策树和随机森林),并通过classification_reportaccuracy_score评估了各个模型的性能。
  3. 模型预测:使用训练好的模型对新数据进行了预测。

4. 总结

  • KNN:适合用于小型数据集,计算复杂度较高。
  • SVM:对于中小型数据集效果不错,但训练时间较长。
  • 决策树:易于理解和解释,但容易过拟合。
  • 随机森林:通过集成多棵决策树,通常表现良好,减少了过拟合的风险。

在实际的机器学习项目中,你可以根据任务的特点选择合适的模型,并不断调整参数以优化模型的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2267665.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis 实战篇 ——《黑马点评》(上)

《引言》 在进行了前面关于 Redis 基础篇及其客户端的学习之后,开始着手进行实战篇的学习。因内容很多,所以将会分为【 上 中 下 】三篇记录学习的内容与在学习的过程中解决问题的方法。Redis 实战篇的内容我写的很详细,为了能写的更好也付出…

Intent--组件通信

组件通信1 获取子活动的返回值 创建Activity时实现自动注册!【Activity必须要注册才能使用】 默认 LinearLayout 布局,注意 xml 中约束布局的使用; 若需要更改 线性布局 只需要将标签更改为 LinearLayout 即可,记得 设置线性布局…

word参考文献第二行缩进对齐

刚添加完参考文献的格式是这样: ”段落“—>缩进修改、取消孤行控制 就可以变成

UE(虚幻)学习(一) UE5.3.2和VS2022的安装以及遇到的问题和一些CS8604、CA2017报错问题.

最近工作很多东西是UE搞的,工作安排上也稍微缓口气,来学学UE,因为同事都用的UE5.3,所以就从UE5.3开始吧,之前学习过UE4,放上两年什么都不记得了。还是需要做一些记录。 本来安装不想写什么,谁知…

【YOLOv3】源码(train.py)

概述 主要模块分析 参数解析与初始化 功能:解析命令行参数,设置训练配置项目经理制定详细的施工计划和资源分配日志记录与监控 功能:初始化日志记录器,配置监控系统项目经理使用监控和记录工具,实时跟踪施工进度和质量…

systemverilog语法:assertion summary

topics assertion 介绍 Property在验证中的应用 ended表示sequence执行结束。 property 立即断言不消耗时间,好像if…else…,关键字不含property. 并发断言消耗时间,关键字含property. 立即断言 并发断言

blender中合并的模型,在threejs中显示多个mesh;blender多材质烘培成一个材质

描述:在blender中合并的模型导出为glb,在threejs中导入仍显示多个mesh,并不是统一的整体,导致需要整体高亮或者使用DragControls等不能统一控制。 原因:模型有多个材质,在blender中合并的时候,…

关于最新MySQL9.0.1版本zip自配(通用)版下载、安装、环境配置

一、下载 从MySQL官网进行下载MySQL最新版本,滑到页面最下面点击社区免费版,(不是企业版) 点击完成后选择自己想要下载的版本,选择下载zip压缩,不用debug和其他的东西。 下载完成后进入解压,注…

4.银河麒麟V10(ARM) 离线安装 MySQL

1. 系统版本 [rootga-sit-cssjgj-db-01u ~]# nkvers ############## Kylin Linux Version ################# Release: Kylin Linux Advanced Server release V10 (Lance)Kernel: 4.19.90-52.39.v2207.ky10.aarch64Build: Kylin Linux Advanced Server release V10 (SP3) /(La…

InfoNCE Loss详解(上)

引言 InfoNCE对比学习损失是学习句嵌入绕不开的知识点,本文就从头开始来探讨一下它是怎么来的。 先验知识 数学期望与大数定律 期望(expectation,expected value,数学期望,mathematical expectation)是随机变量的平均值&#…

机器人C++开源库The Robotics Library (RL)使用手册(一)

强大的、完整的C机器人开源库 1、是否可以免费商用?2、支持什么平台?3、下载地址4、开始! 1、是否可以免费商用? Robotics Library(RL)是一个独立的C库,用于机器人运动学、运动规划和控制。它涵…

超快速的路径优化IKD-SWOpt:SHIFT Planner 中增量 KD 树滑动窗口优化算法详解

IKD-SWOpt:SHIFT Planner 中增量 KD 树滑动窗口优化算法详解 今天本博主王婆卖瓜自卖自夸😄,介绍自己paper中的算法,本算法已经持续开源中(部分关键内容)Github,之前很多读者朋友一直说要详细讲讲路径优化算法&#x…

meshy的文本到3d的使用

Meshy官方网站: 中文官网: Meshy官网中文站 ​编辑 Opens in a new window ​编辑www.meshycn.com Meshy AI 中文官网首页 英文官网: Meshy目前似乎还没有单独的英文官网,但您可以在中文官网上找到英文界面或相关英文资料。 链…

浅谈某平台多场景下反爬虫与风控业务

文章目录 1. 写在前面2. 内容反爬3. 账号风控3. 接口验签 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致…

UI页面布局分析(4)- 贵族 特权分页列表

引言 在现在移动应用中,展示用户特权的UI设计不仅是吸引用户的关键手段,更是提升产品体验的重要部分。特别是在直播场景中,贵族特权作为一种高价值用户身份的象征,通常需要通过精致的页面和流程的交互来突出其重要性和独特性。 …

计算机网络实验室建设方案

一、计算机网络实验室拓扑结构 计算机网络综合实验室解决方案,是面向高校网络相关专业开展教学实训的综合实训基地解决方案。教学实训系统采用 B/S架构,通过公有云教学实训平台在线学习模式,轻松实现网络系统建设与运维技术的教学…

D类音频应用EMI管理

1、前言 对于EMI,首先需要理解天线。频率和波长之间的关系,如下图所示。   作为有效天线所需的最短长度是λ/4。在空气中,介电常数是1,但是在FR4或玻璃环氧PCB的情况下,介电常数大约4.8。这种效应会导致信号在FR4材…

若依框架之简历pdf文档预览功能

一、前端 (1)安装插件vue-pdf:npm install vue-pdf (2)引入方式:import pdf from "vue-pdf"; (3)components注入方式:components:{pdf} (4&…

lua-debug for Sublime

目标 Sublime 也支持 lua-debug,操作体验与 VSCode 一致。 优势 执行效率高,不掉帧 可随时开启 配置简单,一份配置兼容 VSCode 和 Sublime 安装 要求 Sublime 4 的版本(注:从 Sublime 3 升到 4 的不算,…

手机h5加桌面图标

手机h5应用1&#xff0c;网址浏览器添加到桌面&#xff0c;修改图标 关键代码 <!-- 手机h5加桌面图标 --> <!-- 安卓平台 chrome --> <link relapple-touch-icon-precomposed href<% BASE_URL %>logonew.png> <meta name"mobile-web-app-capab…