Leetcode打卡:形成目标字符串需要的最少字符串数II

news2024/12/19 6:34:46

执行结果:通过

题目:3292  形成目标字符串需要的最少字符串数II

给你一个字符串数组 words 和一个字符串 target

如果字符串 x 是 words 中 任意 字符串的 

前缀

,则认为 x 是一个 有效 字符串。

现计划通过 连接 有效字符串形成 target ,请你计算并返回需要连接的 最少 字符串数量。如果无法通过这种方式形成 target,则返回 -1

示例 1:

输入: words = ["abc","aaaaa","bcdef"], target = "aabcdabc"

输出: 3

解释:

target 字符串可以通过连接以下有效字符串形成:

  • words[1] 的长度为 2 的前缀,即 "aa"
  • words[2] 的长度为 3 的前缀,即 "bcd"
  • words[0] 的长度为 3 的前缀,即 "abc"

示例 2:

输入: words = ["abababab","ab"], target = "ababaababa"

输出: 2

解释:

target 字符串可以通过连接以下有效字符串形成:

  • words[0] 的长度为 5 的前缀,即 "ababa"
  • words[0] 的长度为 5 的前缀,即 "ababa"

示例 3:

输入: words = ["abcdef"], target = "xyz"

输出: -1

提示:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 5 * 104
  • 输入确保 sum(words[i].length) <= 105.
  • words[i]  只包含小写英文字母。
  • 1 <= target.length <= 5 * 104
  • target  只包含小写英文字母。

代码以及解题思路

代码

class Solution:
    def minValidStrings(self, words: List[str], target: str) -> int:
        n = reduce(lambda a, b: a + len(b), words, 1)
        ac = AC(n)
        for i, word in enumerate(words):
            ac.insert(word, 1)
        ac.build()
        ans = ac.search(target)
        return ans
class AC:

    def __init__(self, N: int):
        self.tot = 0
        self.tr = [[0] * 26 for _ in range(N)]
        self.e = [0] * N 
        self.cost = [1] * N
        self.len = [0] * N
        self.fail = [0] * N
        self.last = [0] * N
        

    def insert(self, word: str, cost: int) -> None:
        u = 0
        for i, ch in enumerate(word):
            ch = ord(ch) - ord("a")
            if self.tr[u][ch] == 0:
                self.tot += 1
                self.tr[u][ch] = self.tot
            u = self.tr[u][ch]
        
   
            self.len[u] = i + 1
            self.e[u] += 1
    
    def build(self) -> None:

        dq = deque()
        for i in range(26):
            if self.tr[0][i] != 0:
                dq.append(self.tr[0][i])


        while dq:
            u = dq.popleft()
            for i in range(26):
                if self.tr[u][i] != 0:
                    self.fail[self.tr[u][i]] = self.tr[self.fail[u]][i]
                    self.last[self.tr[u][i]] = self.fail[self.tr[u][i]] if self.len[self.fail[self.tr[u][i]]] else self.last[self.fail[self.tr[u][i]]]
                    dq.append(self.tr[u][i])
                else:
                    self.tr[u][i] = self.tr[self.fail[u]][i]
        


    def search(self, word: str) -> int:
        n = len(word)
        dp = [0] * (n+1)
        u = 0
        for i in range(1, n+1):
            ch = ord(word[i-1]) - ord("a")
            u = self.tr[u][ch]
            if u == 0:
                return -1
            dp[i] = dp[i - self.len[u]] + 1
        return dp[n]
            
     

解题思路:

  1. 初始化 AC 自动机
    • AC 自动机是一种用于多模式字符串匹配的数据结构,可以看作是一个Trie(前缀树)与KMP(Knuth-Morris-Pratt)算法的结合。
    • 初始化时,需要构建一个Trie树,并添加失败指针(fail指针),使得在匹配失败时可以跳转到另一个状态继续匹配。
  2. 构建 AC 自动机
    • 将所有单词插入到Trie树中,并记录每个节点的信息,如节点对应的字符串长度、是否是某个单词的结尾等。
    • 使用广度优先搜索(BFS)构建失败指针,使得每个节点在匹配失败时可以跳转到另一个节点继续匹配。
  3. 动态规划求解最小有效字符串数量
    • 使用动态规划数组 dp,其中 dp[i] 表示形成 target 的前 i 个字符所需的最小有效字符串数量。
    • 遍历 target 的每个字符,利用AC自动机在Trie树中查找当前字符可能匹配的最长前缀。
    • 更新 dp[i] 为 dp[i - len(匹配的前缀)] + 1,表示通过添加一个有效字符串(包含当前匹配的前缀)来形成 target 的前 i 个字符。
    • 如果在某个位置无法匹配任何前缀(即AC自动机的当前状态为0),则无法形成 target,返回 -1。
  4. 返回结果
    • 遍历完成后,dp[n]n 是 target 的长度)即为形成整个 target 所需的最小有效字符串数量。

代码细节

  • reduce(lambda a, b: a + len(b), words, 1):计算所有单词的总长度,用于初始化AC自动机的大小。
  • AC 类:实现了AC自动机的构建和搜索功能。
    • insert 方法:将单词插入Trie树。
    • build 方法:构建失败指针。
    • search 方法:使用动态规划搜索形成 target 的最小有效字符串数量。

注意事项

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2262006.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【蓝桥杯】49362.《视频相关度计算》

视频相关性计算 问题描述 小蓝作为异世界最大流媒体网站 LanTube 的高级算法工程师&#xff0c;他想要实现更加精准的视频推荐服务来满足用户的喜好。 其中&#xff0c;**“视频的相关性”**是一个重要指标&#xff0c;它代表了两个视频 A 到 B 的关联程度&#xff0c;记作 f…

ASP.NET|日常开发中数据集合详解

ASP.NET&#xff5c;日常开发中数据集合详解 前言一、数组&#xff08;Array&#xff09;1.1 定义和基本概念1.2 数组的操作 二、列表&#xff08;List<T>&#xff09;2.1 特点和优势2.2 常用操作 三、字典&#xff08;Dictionary<K, V>&#xff09;3.1 概念和用途…

如何将多张图片合并为一个pdf?多张图片合并成一个PDF文件的方法

如何将多张图片合并为一个pdf&#xff1f;当我们需要将多张图片合并为一个PDF文件时&#xff0c;通常是因为我们希望将这些图片整理成一个统一的文档&#xff0c;方便查看、分享或打印。无论是工作中需要提交的报告、学生们需要整理的作业&#xff0c;还是个人收藏的照片、旅行…

【html网页页面013】html+css制作节日主题圣诞节网页含视频、留言表单(独创首发-5页面附效果及源码)

节日主题圣诞节网页制作 &#x1f964;1、写在前面&#x1f367;2、涉及知识&#x1f333;3、网页效果完整效果(5页)&#xff1a;代码目录结构&#xff1a;page1、首页page2、庆祝page3、影响page4、起源page5、留言板 &#x1f308;4、网页源码4.1 html4.2 CSS4.3 源码获取圣诞…

直播预告 | 蓝卓生态说,解锁supOS在化工领域的无限可能

生态是蓝卓生命力的体现&#xff0c;为全方位赋能生态伙伴使用supOS并从中获益&#xff0c;蓝卓打造生态说系列栏目&#xff0c;通过生态沙龙、直播对话、案例剖析、产品解读等&#xff0c;持续展现“12N”的智能工厂创新路径&#xff0c;加速推进工业数字化转型。 嘉宾介绍 朱…

java对子网掩码的转换

一般的子网掩码展示为点分十进制形式&#xff0c;如&#xff1a;255.255.255.0&#xff0c;但有时因为业务需要&#xff0c;我们需要转换成对应的数字&#xff0c;以及数字转成点分十进制&#xff0c;所以整理了java的方法可以进行两者的互相转换 1、点分十进制转数字 public…

亚马逊-用表格创建多变体商品

引言 当我们使用“月亮树选品软件”找到一款不错的产品时&#xff0c;我们会延续这个产品的优点&#xff0c;并对其进行改良。改良之后&#xff0c;我们需要将产品上架到亚马逊平台&#xff0c;以测试这个产品的市场表现。然而&#xff0c;许多亚马逊卖家觉得上传多变体商品这…

使用C#在目录层次结构中搜索文件以查找目标字符串

例程以递归方式搜索目录层次结构中的文件以查找目标字符串。它可以搜索几乎任何类型的文件&#xff0c;即使它不包含 Windows 理解的文本。例如&#xff0c;它可以搜索 DLL 和可执行文件以查看它们是否恰好包含字符串。 下面的代码中显示的ListFiles 方法完成了大部分工作。 …

【深度学习总结】使用PDF构建RAG:结合Langchain和通义千问

【深度学习总结】使用PDF构建RAG&#xff1a;结合Langchain和通义千问 使用平台&#xff1a;趋动云&#xff0c;注册送算力 前言 在大型语言模型&#xff08;LLMs&#xff09;应用领域&#xff0c;我们面临着大量挑战&#xff0c;从特定领域知识的匮乏到信息准确性的窘境&am…

P8772 [蓝桥杯 2022 省 A] 求和

题目描述&#xff1a; 解题思路&#xff1a; 首先这题我们可以直接用两个for循环嵌套来控制两个变量来求值&#xff0c;但是这样做时间复杂度高。这里我们用到了一个前缀和差的方法。通过for循环变量第一个变量&#xff0c;用和差的方法的到第二个量&#xff0c;这样就只用了一…

Flux Tools 结构简析

Flux Tools 结构简析 BFL 这次一共发布了 Canny、Depth、Redux、Fill 四个 Tools 模型系列&#xff0c;分别对应我们熟悉的 ControlNets、Image Variation&#xff08;IP Adapter&#xff09;和 Inpainting 三种图片条件控制方法。虽然实现功能是相同的&#xff0c;但是其具体…

什么是芯片电阻

有人把Chip Resistor翻译成“芯片电阻”&#xff0c;我觉得翻译成“贴片电阻”或“片状电阻”更合适。有些厂商也称之为”电阻片”&#xff0c;英文写作Resistor Chip。比如&#xff1a;Thick film resistor chips&#xff08;厚膜电阻片&#xff09;、Thin film resistor chip…

【Linux】深入理解进程信号机制:信号的产生、捕获与阻塞

&#x1f3ac; 个人主页&#xff1a;谁在夜里看海. &#x1f4d6; 个人专栏&#xff1a;《C系列》《Linux系列》《算法系列》 ⛰️ 时间不语&#xff0c;却回答了所有问题 目录 &#x1f4da;前言 &#x1f4da;一、信号的本质 &#x1f4d6;1.异步通信 &#x1f4d6;2.信…

模具生产过程中的标签使用流程图

①NFC芯片嵌入周转筐&#xff0c;通过读卡器读取CK_Label_v3的数据&#xff0c;并将这些信息上传至服务器进行存储&#xff1b; ②服务器随后与客户的WMS&#xff08;仓库管理系统&#xff09;进行交互&#xff0c;记录和同步注塑机的原始数据&#xff1b; ③当周转筐内的模具…

【AIGC安全】CCF-CV企业交流会直播回顾:探寻AI安全治理,共筑可信AI未来

文章目录 一、活动背景&#xff1a;AI技术快速发展与安全治理需求迫切二、论坛内容金耀辉&#xff1a;智能共生时代&#xff1a;平衡生成式AI的创新与风险何延哲&#xff1a;人工智能安全检测评估的逻辑和要点谢洪涛&#xff1a;面向特定人物深度伪造视频的主动防御与被动检测技…

Cesium 无人机航线规划(区域航线)

区域航线&#xff0c;即划定一片区域一键巡查 这里选择点几个点&#xff0c;形成的区域内计算规划航线

【SH】Ubuntu Server 24搭建Web服务器访问Python程序研发笔记

文章目录 说个问题写个方案一、安装Ubuntu Server二、安装Web服务器采用Nginx服务器 三、安装Python及依赖创建项目虚拟环境 四、安装Python Web框架采用Flask框架创建和运行Flask应用&#xff08;以后的重点&#xff09; 五、安装WSGI服务器采用Gunicorn 六、配置Nginx七、验证…

SpringBoot如何实现缓存预热?

缓存预热是指在 Spring Boot 项目启动时&#xff0c;预先将数据加载到缓存系统&#xff08;如 Redis&#xff09;中的一种机制。 那么问题来了&#xff0c;在 Spring Boot 项目启动之后&#xff0c;在什么时候&#xff1f;在哪里可以将数据加载到缓存系统呢&#xff1f; 实现…

贪心算法 part01

class Solution { public:int maxSubArray(vector<int>& nums) {int result INT32_MIN;int count 0;for (int i 0; i < nums.size(); i) {count nums[i];if (count > result) { // 取区间累计的最大值&#xff08;相当于不断确定最大子序终止位置&#xff…

Redis应用—6.热key探测设计与实践

大纲 1.热key引发的巨大风险 2.以往热key问题怎么解决 3.热key进内存后的优势 4.热key探测关键指标 5.热key探测框架JdHotkey的简介 6.热key探测框架JdHotkey的组成 7.热key探测框架JdHotkey的工作流程 8.热key探测框架JdHotkey的性能表现 9.关于热key探测框架JdHotke…