【AIGC安全】CCF-CV企业交流会直播回顾:探寻AI安全治理,共筑可信AI未来

news2024/12/19 6:07:14

文章目录

  • 一、活动背景:AI技术快速发展与安全治理需求迫切
  • 二、论坛内容
    • 金耀辉:智能共生时代:平衡生成式AI的创新与风险
    • 何延哲:人工智能安全检测评估的逻辑和要点
    • 谢洪涛:面向特定人物深度伪造视频的主动防御与被动检测技术
    • 郭丰俊:视觉内容安全技术的前沿进展与应用
    • 赫然:生成式人工智能安全与治理
  • 三、回顾总结

在这里插入图片描述


一、活动背景:AI技术快速发展与安全治理需求迫切

随着人工智能(AI)技术的迅猛进步,尤其是以ChatGPT为代表的大型语言模型技术的兴起,AI技术已广泛渗透至各个领域。然而,AI技术的快速发展亦伴随着一系列安全隐患的出现,如数据安全、知识产权、算法偏见、有害内容生成以及深度伪造、AI诈骗等。这些问题不仅引起了公众的广泛关注和深切忧虑,也对AI技术的健康发展和社会的和谐稳定构成了潜在威胁。全国网络安全标准化技术委员会等机构亦发布了相关框架和指导原则,旨在规范AI技术的发展和应用,降低其潜在风险。同时,学术界和工业界也在积极探索AI安全治理的途径,从立法、监管、前沿研究、技术实践等多个层面出发,寻求有效的解决方案。

正是在此背景下,由中国计算机学会计算机视觉专委会主办,合合信息承办,中国运筹学会数学与智能分会协办的《打造大模型时代的可信AI》论坛应时而生。该论坛旨在汇聚来自高校、研究机构、企业的专家学者,共同探讨AI安全领域的最新进展和未来趋势,为AI技术的健康发展提供有益的思路和建议。


二、论坛内容

论坛伊始,在热烈的掌声中,中国计算机学会计算机视觉专委会副秘书长潘金山博士走上台前,发表了热情洋溢的致辞。潘金山博士首先对各位嘉宾和参会者的到来表示了热烈的欢迎和衷心的感谢。他提到,在这个大模型时代,AI技术正以前所未有的速度改变着我们的生活和工作方式。然而,随着AI技术的广泛应用,其安全性问题也日益凸显,成为制约AI技术进一步发展的重要因素。潘博士强调,AI安全治理不仅关乎技术的健康发展,更关乎社会的和谐稳定。因此,加强AI安全治理,推动AI技术向善发展,已成为我们共同的责任和使命。他希望通过此次论坛,能够汇聚来自高校、研究机构、企业的专家学者,共同探讨AI安全领域的最新进展和未来趋势,为AI技术的健康发展提供有益的思路和建议。在致辞的最后,潘金山博士预祝本次论坛圆满成功,并期待各位嘉宾和参会者能够收获满满,为AI安全治理事业贡献自己的力量。


金耀辉:智能共生时代:平衡生成式AI的创新与风险

上海交通大学人工智能研究院教授、总工程师金耀辉老师在分享中指出,大语言模型的内容安全风险多种多样,包括提示词注入、输出处理不安全、训练数据中毒、模型拒绝服务等。这些风险不仅影响模型的性能,还可能对社会造成负面影响。例如,三星员工违规使用ChatGPT导致机密资料外泄,新闻网站CNET使用LLMs生成文章却包含严重事实错误,这些案例都为我们敲响了警钟。

那么,如何保障LLMs的内容安全呢?金耀辉老师提出了几种安全保障手段。首先是训练对齐,通过算法和数据对模型进行微调,使其更加符合安全需求。这种方法可以增强模型的整体安全性能,减少算法偏见和有害内容的生成。此外,还有面向安全的提示引导和文本过滤等方法。提示引导利用特定流程和策略引导LLMs,进一步激活其固有的安全属性;而文本过滤则通过外接模块检测有害内容,并触发处理机制,防止有害内容的产生和传播。

金耀辉老师的分享为我们提供了宝贵的见解和思考。在享受生成式AI带来的便利和创新的同时,我们也需要时刻关注其带来的风险和挑战,积极寻求解决方案和保障手段。只有这样,我们才能真正实现生成式AI的创新与风险的平衡,推动人工智能技术的健康发展。

上海交通大学人工智能研究院教授、总工程师金耀辉进行《智能共生时代:平衡生成式AI的创新与风险》主题分享


何延哲:人工智能安全检测评估的逻辑和要点

然而,仅有技术手段是不够的,规范标准也是AI健康生长的外部力量。中国电子标准院网安中心测评实验室副主任何延哲就人工智能安全检测评估的核心逻辑与关键要点进行了精彩纷呈的分享。

何延哲老师首先强调了人工智能安全检测评估的背景与必要性。随着人工智能技术的迅猛发展,其带来的安全风险也日益凸显,涵盖网络信息安全、科技伦理安全、算力网络安全、数据安全与隐私保护等多个维度。这些风险不仅关乎个人权益,更可能对社会稳定与经济发展产生深远影响。

针对这些风险,何延哲老师深入剖析了当前人工智能安全检测评估的方法与思路。他提到,我国已出台多项相关法律法规、政策文件及标准规范,为人工智能安全检测评估提供了坚实的制度保障。同时,他还介绍了人工智能安全模块的拆分与检测评估的基本思路,包括算力网络安全、个人信息保护、数据安全等关键领域。

在分享中,何延哲老师特别强调了基于人工智能相关标准规范的安全检测评估机制的重要性。他详细解读了《信息安全技术 机器学习算法安全评估规范》、《基于个人信息的自动化决策安全要求》等标准规范,并指出这些规范为人工智能安全检测评估提供了明确的指导与依据。此外,何延哲老师还强调了加强个人信息处理全生命周期保护、定期开展合规审计、采取加密等措施保障个人信息安全的重要性。

电子标准院网安中心测评实验室副主任、CCIA数安委常务副主任何延哲进行《人工智能安全检测评估的逻辑和要点》主题分享


谢洪涛:面向特定人物深度伪造视频的主动防御与被动检测技术

在下一环节,中国科学技术大学教授谢洪涛,为与会者带来了一场关于面向特定人物深度伪造视频的主动防御与被动检测技术的深度解析。

谢洪涛教授首先介绍了深度伪造技术的背景及其发展现状。他指出,随着深度学习技术的飞速发展,深度伪造技术已经能够在人脸图像、语音等领域实现高度逼真的伪造效果,这无疑给个人隐私、国家安全等方面带来了前所未有的挑战。随后,谢教授详细阐述了主动防御与被动检测技术的核心原理。主动防御技术主要是在内容发布前添加一定程度的干扰信号,以防止伪造或即便伪造也能够顺利溯源。而被动检测技术则是在人脸素材被恶意伪造后,利用伪造视频自身获取线索或提取特征进行检测。

在主动防御方面,谢教授介绍了通过添加对抗攻击噪声、嵌入特定信息等方式,实现对特定人物视频图像的主动干扰和主动取证。这些技术能够有效防止伪造者利用深度伪造技术对视频进行篡改,从而保护个人隐私和国家安全;在被动检测方面,谢教授则重点介绍了基于多模态先验知识的一致性检测、基于多层级纹理不一致性学习的深度伪造人脸检测等技术。这些技术能够通过对伪造视频进行精细化的分析,准确识别出伪造痕迹,从而实现对深度伪造视频的有效检测。

此外,谢洪涛教授还分享了其研究团队在主动防御与被动检测技术方面所取得的最新研究成果。他们提出了一系列创新性的算法和方法,如基于扩散模型的反演能力搜索对抗人脸、基于互相关序列嵌入水印等,这些成果在学术界和工业界都产生了广泛的影响。

中国科学技术大学教授、国家杰出青年基金获得者谢洪涛教授进行《面向特定人物深度伪造视频的主动防御与被动检测技术》主题分享


郭丰俊:视觉内容安全技术的前沿进展与应用

随后,合合信息图像算法研发总监郭丰俊的分享让我看到了AI技术在图像篡改检测方面的最新成果。在开篇部分,郭丰俊老师不仅指出了当前视觉内容安全需求日益增多的原因,还强调了这一领域的重要性。他提到,随着AI技术的不断发展,伪造技术也在不断进步,这使得伪造内容变得更加难以识别。同时,黑灰产利用这些技术进行非法活动,给社会带来了极大的危害。因此,企业、政府等对于视觉内容安全的需求变得越来越迫切。

郭丰俊老师介绍合合信息的通用篡改检测目前已经落地证券、保险、银行、零售等行业,同时支持证照、证书、票据、截图、扫描文档等通用类的篡改模型。另外一个人脸鉴伪检测产品也已经落地,支持换脸、生成式人脸检测等。
在这里插入图片描述


在这里插入图片描述

另外,郭老师介绍,合合信息文档图像篡改检测近年来受关注程度也越来越高,从2022年以来,相关方向的比赛多次收获了第一名的好成绩。
在这里插入图片描述

在谈到视觉内容安全技术的挑战时,郭丰俊老师不仅列举了当前技术面临的主要问题,还深入分析了这些问题的根源和解决方案。他提到,跨域泛化能力是当前技术面临的一大挑战,因为不同领域的数据分布和特征差异很大,导致模型在不同领域上的表现差异也很大。为了解决这个问题,学术界和工业界都在探索新的方法和算法,以提高模型的泛化能力。此外,他还提到了截图或PDF等纯色背景图篡改检测、质量退化导致的篡改痕迹损失以及检出精度与误检率的矛盾等问题,并给出了相应的解决方案和建议。

他提到,随着深度学习技术的不断发展,越来越多的研究者开始探索基于深度学习的篡改检测方法,这些方法在检测精度和效率上都有了很大的提升。此外,他还介绍了基于区块链的内容追溯技术、基于多模态信息融合的篡改检测方法等前沿研究方向,这些方向都具有很大的潜力和应用前景。

在总结部分,郭丰俊老师不仅强调了视觉内容安全技术的重要性,还呼吁业界同仁共同努力,推动这一领域的发展。他提到,制定相关标准和规范是促进内容安全系统更好落地的重要举措之一,因为标准和规范可以为行业提供明确的指导和方向。同时,他也对大模型等新技术的应用表示了期待和关注,认为这些新技术将为视觉内容安全技术带来新的突破和发展机遇。郭丰俊老师的分享内容丰富、见解独到,为我们提供了一个全面了解视觉内容安全技术的机会。
合合信息图像算法研发总监郭丰俊进行《视觉内容安全技术的前沿进展与应用》主题分享


赫然:生成式人工智能安全与治理

中国科学院自动化研究所研究员、IEEE/IAPR Fellow赫然博士的分享则让我对人工智能鉴别与合成技术之间的博弈有了更深入的认识。赫然博士首先介绍了生成式人工智能的基本概念和发展历程。他强调,生成式人工智能作为人工智能的一个重要分支,已经取得了显著的进步,并在各个领域展现出巨大的潜力。然而,随着其应用的日益广泛,安全和治理问题也日益凸显。
赫然博士指出,生成式人工智能面临的主要安全风险包括数据泄露、隐私侵犯、内容造假等。这些风险不仅可能对个人造成危害,还可能对国家安全和社会稳定构成威胁。因此,加强生成式人工智能的安全与治理显得尤为重要。
为了应对这些挑战,赫然博士提出了一系列建议。他强调,应建立健全的生成式人工智能监管机制,明确责任主体和监管标准。同时,加强技术研发和创新,提高生成式人工智能的安全性和可控性。此外,还应加强国际合作与交流,共同应对生成式人工智能带来的全球性挑战。
中国科学院自动化研究所研究员、IEEE/IAPR Fellow赫然进行《生成式人工智能安全与治理》主题分享


三、回顾总结

整场直播下来,我深感收获颇丰。我不仅学到了最新的AI技术知识,更对AI安全治理有了更深入的认识。我意识到,AI技术的快速发展带来了前所未有的机遇和挑战,而加强AI安全治理、推动AI向善发展是我们每个人的责任。同时,我也看到了专家学者们在AI安全治理方面所做出的努力和取得的成果,这让我对AI技术的未来发展充满了信心和期待。

回顾这场盛会,我感受到了专家学者们对AI安全治理的深刻洞察和坚定信念。我相信,在他们的共同努力下,AI技术一定会更加安全、可信、可靠地服务于人类社会。而我,也将继续关注AI技术的发展动态,为AI技术的健康发展贡献自己的一份力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2261985.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Cesium 无人机航线规划(区域航线)

区域航线,即划定一片区域一键巡查 这里选择点几个点,形成的区域内计算规划航线

【SH】Ubuntu Server 24搭建Web服务器访问Python程序研发笔记

文章目录 说个问题写个方案一、安装Ubuntu Server二、安装Web服务器采用Nginx服务器 三、安装Python及依赖创建项目虚拟环境 四、安装Python Web框架采用Flask框架创建和运行Flask应用(以后的重点) 五、安装WSGI服务器采用Gunicorn 六、配置Nginx七、验证…

SpringBoot如何实现缓存预热?

缓存预热是指在 Spring Boot 项目启动时,预先将数据加载到缓存系统(如 Redis)中的一种机制。 那么问题来了,在 Spring Boot 项目启动之后,在什么时候?在哪里可以将数据加载到缓存系统呢? 实现…

贪心算法 part01

class Solution { public:int maxSubArray(vector<int>& nums) {int result INT32_MIN;int count 0;for (int i 0; i < nums.size(); i) {count nums[i];if (count > result) { // 取区间累计的最大值&#xff08;相当于不断确定最大子序终止位置&#xff…

Redis应用—6.热key探测设计与实践

大纲 1.热key引发的巨大风险 2.以往热key问题怎么解决 3.热key进内存后的优势 4.热key探测关键指标 5.热key探测框架JdHotkey的简介 6.热key探测框架JdHotkey的组成 7.热key探测框架JdHotkey的工作流程 8.热key探测框架JdHotkey的性能表现 9.关于热key探测框架JdHotke…

海外招聘丨卢森堡大学—人工智能和机器学习中的 PI 用于图像分析

雇主简介 卢森堡大学立志成为欧洲最受推崇的大学之一&#xff0c;具有鲜明的国际化、多语言和跨学科特色。 她促进研究和教学的相互影响&#xff0c;与国家息息相关&#xff0c;因其在特定领域的研究和教学而闻名于世&#xff0c;并成为当代欧洲高等教育的创新典范。 她的核…

SSM虾米音乐项目6--后台专辑模块的修改和删除

删除操作 删除的前端界面 删除的前端代码 <button data-toggle"button" class"btn btn-sm btn-warning" aid"${album.aid}" pic"${album.pic}"> 删除 </button></td> 点击删除按钮&#xff0c;会调用JS中的AJAX请…

【潜意识Java】了解并详细分析Java与AIGC的结合应用和使用方式

目录 一、AIGC技术概述 二、Java与AIGC结合的价值 三、实现Java与AIGC结合&#xff1a;基于OpenAI的API进行智能文本生成 1. 环境准备 2. Java代码实现 3. 代码解析 4. 运行效果 四、进一步优化与扩展 五、总结 随着人工智能&#xff08;AI&#xff09;的飞速发展&…

基于容器的云原生,让业务更自由地翱翔云端

无论是要构建一个应用或开发一个更庞大的解决方案&#xff0c;在技术选型时&#xff0c;技术的开放性和可移植性已经成为很多企业优先考虑的问题之一。毕竟没人希望自己未来的发展方向和成长速度被自己若干年前选择使用的某项技术所限制或拖累。 那么当你的业务已经上云&#x…

二叉树_堆

目录 一. 树(非线性结构&#xff09; 1.1 树的概念与结构 1.2 树的表示 二. 二叉树 2.1 二叉树的概念与结构 2.2 特殊的二叉树 2.3 二叉树的存储结构 三. 实现顺序结构的二叉树 3.1 堆的概念与结构 一. 树(非线性结构&#xff09; 1.1 树的概念与结构 概念&#xff…

linux0.11源码分析第一弹——bootset.s内容

&#x1f680;前言 本系列主要参考的《linux源码趣读》&#xff0c;也结合之前《一个64位操作系统的设计与实现》的内容结合起来进行整理成本系列博客。在这一篇博客对应的是《linux源码趣读》第一~四回 目录 &#x1f680;前言&#x1f3c6;启动后的第一步&#x1f4c3;启动区…

设计模式之桥接模式:抽象与实现之间的分离艺术

~犬&#x1f4f0;余~ “我欲贱而贵&#xff0c;愚而智&#xff0c;贫而富&#xff0c;可乎&#xff1f; 曰&#xff1a;其唯学乎” 桥接模式概述与角色组成 想象一下你家里的电视遥控器&#xff0c;无论是索尼还是三星的电视机&#xff0c;遥控器的按键功能都差不多&#xff1…

【从零开始入门unity游戏开发之——C#篇17】C#面向对象的封装——类(Class)和对象、成员变量和访问修饰符、成员方法

文章目录 一、类和对象1、什么是类和对象&#xff1f;2、例子说明2.1 例子1&#xff1a;(1) **类的定义&#xff1a;**(2) **创建对象&#xff1a;**(3) **类和对象的关系&#xff1a;** 2.2 例子2&#xff1a;**类的比喻&#xff1a;****对象的比喻&#xff1a;**代码实例&…

在Ubuntu 22.04 LTS中使用PyTorch深度学习框架并调用多GPU时遇到indexSelectLargeIndex相关的断言失败【笔记】

在Ubuntu 22.04 LTS系统中&#xff0c;已安装配置好CUDA 12.4、cuDNN 9.1.1以及PyTorch环境 export CUDA_VISIBLE_DEVICES0,1,2,3,4,5,6,7 在PyTorch深度学习框架训练调用多GPU时&#xff0c;提示 indexSelectLargeIndex: block: [x, 0, 0], thread: [x, 0, 0] Assertion src…

FutureCompletableFuture实战

1. Callable&Future&FutureTask介绍 直接继承Thread或者实现Runnable接口都可以创建线程&#xff0c;但是这两种方法都有一个问题就是&#xff1a;没有返回值&#xff0c;也就是不能获取执行完的结果。因此java1.5就提供了Callable接口来实现这一场景&#xff0c;而Fu…

[论文阅读笔记]-PalmTree: 学习一个用于指令嵌入的汇编语言模型

深度学习已在众多二进制分析任务中展示了其优势&#xff0c;包括函数边界检测、二进制代码搜索、函数原型推理、值集分析等。现有方案忽略了复杂的指令内结构&#xff0c;主要依赖于控制流&#xff0c;其中上下文信息是嘈杂的&#xff0c;并且可能受到编译器优化的影响。为了解…

CH582F BLE5.3 蓝牙核心板开发板 60MHz RAM:32KB ROM:448KB

CH582F BLE5.3 蓝牙核心板开发板 60MHz RAM:32KB ROM:448KB 是一款基于南京沁恒&#xff08;WCH&#xff09;推出的高性能、低功耗无线通信芯片CH582F的开发板。以下是该开发板的功能和参数详细介绍&#xff1a; 主要特性 双模蓝牙支持&#xff1a; 支持蓝牙5.0标准&#xff0…

数字IC后端设计实现篇之TSMC 12nm TCD cell(Dummy TCD Cell)应该怎么加?

TSMC 12nm A72项目我们需要按照foundary的要求提前在floorplan阶段加好TCD Cell。这个cell是用来做工艺校准的。这个dummy TCD Cell也可以等后续Calibre 插dummy自动插。但咱们项目要求提前在floorplan阶段就先预先规划好位置。 TSCM12nm 1P9M的metal stack结构图如下图所示。…

《网络对抗技术》Exp9 Web安全基础

实验目标 理解常用网络攻击技术的基本原理。 实验内容 Webgoat实践下相关实验。 实验环境 macOS下Parallels Desktop虚拟机中&#xff08;网络源均设置为共享网络模式&#xff09;&#xff1a; Kali Linux - 64bit&#xff08;攻击机&#xff0c;IP为10.211.55.10&#xff09;…

Chrome 132 版本开发者工具(DevTools)更新内容

Chrome 132 版本开发者工具&#xff08;DevTools&#xff09;更新内容 一、使用 Gemini 调试 Network、Source 和 Performance Chrome 131 可以使用 Gemini 调试 CSS&#xff0c;现在可以调试更多模块了 与元素面板中的右键菜单类似&#xff0c;要打开 AI 辅助面板并开始与 …