独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测

news2025/3/1 3:46:16

往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较

全是干货 | 数据集、学习资料、建模资源分享!

EMD变体分解效果最好算法——CEEMDAN(五)-CSDN博客

拒绝信息泄露!VMD滚动分解 + Informer-BiLSTM并行预测模型-CSDN博客

单步预测-风速预测模型代码全家桶-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM + ARIMA)-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

半天入门!锂电池剩余寿命预测(Python)-CSDN博客

超强预测模型:二次分解-组合预测-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客

独家原创 | SCI 1区 高创新预测模型!-CSDN博客

风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客

高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客

VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客

独家原创 | 超强组合预测模型!-CSDN博客

全网最低价 | 全家桶持续更新!-CSDN博客

独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客

VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客

独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客

CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客

时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客

独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客

模型简介:

组合预测模型思路:使用复杂模型去预测数据的分量特征,因为复杂模型参数量大,适合预测高频复杂分量特征,但是低频分量特征比较简单,要是还用复杂模型的话,就容易过拟合,反而效果不好,所以对于低频分量特征 我们采用简单模型(或者机器学习模型)去预测,然后进行预测分量的重构以实现高精度预测。

环境:python 3.9 pytorch1.8 及其以上

创新点:

创新1:通过CNN卷积池化层降低序列长度,增加数据维度,然后再送入GRU-GlobalAttention进行全局时域特征学习,提高了模型捕捉序列中的全局上下文信息的感知能力;

创新2:基于GlobalAttention优化的GRU网络,GlobalAttention是一种用于加强模型对输入序列不同部分的关注程度的机制。在 GRU 模型中,全局注意力机制可以帮助模型更好地聚焦于输入序列中最相关的部分,从而提高模型的性能和泛化能力。在每个时间步,全局注意力机制计算一个权重向量,表示模型对输入序列各个部分的关注程度,然后将这些权重应用于 GRU 输出的特征表示,通过对所有位置的特征进行加权,使模型能够更有针对性地关注重要的时域特征;

创新3:把 CEEMDAN 算法对时间序列分解后的分量通过样本熵的计算进行划分,再分别通过CNN-GRU-GlobalAttention 模型 和 XGBoost 模型进行组合预测,来实现精准预测。

注意:此次产品,我们还有配套的模型讲解和参数调节讲解!

前言

本文基于前期介绍的电力变压器(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与组合预测模型(CNN-GRU-GlobalAttention + XGBoost)的方法,以提高时间序列数据的预测性能。该方法的核心是使用CEEMDAN算法对时间序列进行分解,接着利用CNN-GRU-GlobalAttention模型和XGBoost模型对分解后的数据进行建模,最终通过集成方法结合两者的预测结果。

电力变压器数据集的详细介绍可以参考下文:

电力变压器数据集介绍和预处理

1 电力变压器数据CEEMDAN分解与可视化

1.1 导入数据

1.2 CEEMDAN分解

根据分解结果看,CEEMDAN一共分解出11个分量,然后通过计算每个分量的样本熵值进行分析。样本熵是一种用于衡量序列复杂度的方法,可以通过计算序列中的不确定性来评估其复杂性。样本熵越高,表示序列的复杂度越大。

我们大致把前6个高样本熵值复杂分量作为CNN-GRU-GlobalAttention模型的输入进行预测,后5个低样本熵值简单分量作为XGBoost模型的输入进行预测.

2 数据集制作与预处理

2.1 划分数据集

按照9:1划分训练集和测试集, 然后再按照前6后5划分分量数据。

在处理LSTF问题时,选择合适的窗口大小(window size)是非常关键的。选择合适的窗口大小可以帮助模型更好地捕捉时间序列中的模式和特征,为了提取序列中更长的依赖建模,本文把窗口大小提升到24,运用CCEMDAN-CNN-GRU-GlobalAttention模型来充分提取前6个分量序列中的特征信息。

分批保存数据,用于不同模型的预测

3 基于CEEMADN的组合预测模型

3.1 定义CNN-GRU-GlobalAttention网络模型

3.2 设置参数,训练模型

50个epoch,MSE 为0.001372,CNN-GRU-GlobalAttention预测效果显著,模型能够充分提取时间序列的时序特征和空间特征,收敛速度快,性能优越,预测精度高,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以适当增加CNN层数和每层的维度,微调学习率;

  • 调整GRU层数、每层神经元个数、注意力维度数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

保存训练结果和预测数据,以便和后面XGBoost模型的结果相组合。

4 基于XGBoost的模型预测

传统机器学习模型 XGBoost 教程如下:

超强预测算法:XGBoost预测模型

数据加载,训练数据、测试数据分组,5个分量,划分5个数据集

保存预测的数据,其他分量预测与上述过程一致,保留最后模型结果即可。

5 结果可视化和模型评估

5.1 分量预测结果可视化

5.2 组合预测结果可视化

5.3 模型评估

由分量预测结果可见,前6个复杂分量在CNN-GRU-GlobalAttention预测模型下拟合效果良好,后5个简单分量在XGBoost模型的预测下,拟合程度特别好,组合预测效果显著!

6 代码、数据整理如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2259153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络基础概念

协议 协议在我的理解看来其实就是为了让全部计算机做通信而设计出来的一种约定 计算机之间的传输媒介是光信号和电信号. 通过 "频率" 和 "强弱" 来表示 0 和 1 这样的信息. 要想传递各种不同的信息, 就需要约定好双方的数据格式 而制定协议这件事情并不是…

向量数据库Faiss C++

目录 1. Faiss简介2. FAISS 的主要特点2.1 高效性2.2 支持多种索引类型2.3 灵活性2.4 GPU 加速2.5 易于集成 3. 应用场景4. 安装4.1 安装依赖4.2 编译源码4.2.1 下载Faiss源码4.2.2 编译 5. Demo5.1 代码5.2 编译5.3 运行 1. Faiss简介 FAISS(Facebook AI Similari…

群控系统服务端开发模式-应用开发-获取登录者今天操作日志

一、后端api开放路由 在根目录下route文件夹下app.php文件中,在perimission的group中添加如下代码: Route::get(member/personal_log,permission.Member/personalLog);// 获取个人信息操作接口 二、后端api添加方法 在根目录下app文件夹下controller文…

淘宝/天猫获得淘宝商品详情高级版 API 接口获取

要获取淘宝/天猫商品详情高级版API接口,您可以按照以下步骤操作: 注册淘宝开放平台账号: 访问淘宝开放平台官网,点击“开发者中心”,使用淘宝账号登录或注册新账号。这是获取API权限和密钥的第一步。 创建应用并获取AP…

腾讯云系统盘扩容

在腾讯云申请空间后,只要执行三行命令 云硬盘 在线扩展系统盘分区及文件系统-操作指南-文档中心-腾讯云 安装工具 yum install -y cloud-utils-growpart 给/eav/vda1扩分区 LC_ALLen_US.UTF-8 growpart /dev/vda 1 挂载扩容 ext4 文件系统 resize2fs /dev/vda1 …

数据结构 ——二叉树转广义表

数据结构 ——二叉树转广义表 1、树转广义表 如下一棵树&#xff0c;转换为广义表 root(c(a()(b()()))(e(d()())(f()(j(h()())())))) (根&#xff08;左子树&#xff09;&#xff08;右子树&#xff09;) 代码实现 #include<stdio.h> #include<stdlib.h>//保存…

人工智能大语言模型起源篇(二),从通用语言微调到驾驭LLM

上一篇&#xff1a;《人工智能大语言模型起源篇&#xff08;一&#xff09;&#xff0c;从哪里开始》 &#xff08;5&#xff09;Howard 和 Ruder 于2018年发表的《Universal Language Model Fine-tuning for Text Classification》&#xff0c;https://arxiv.org/abs/1801.06…

设置笔记本同时连接内外网

原理&#xff1a;通过笔记本和手机相连&#xff0c;实现双网卡功能能。笔记本连接内网wifi、同时手机端开启usb网络共享&#xff0c;笔记本就有了两个网&#xff0c;然配置那个访问外网&#xff0c;那个访问内网。 1.笔记本wifi连接内网wifi 2.手机端共享网络。 手机打开 -【…

【Hexo】Hexo基本使用

Hexo官网&#xff1a;https://hexo.io/ Hexo Github: https://github.com/hexojs/hexo Hexo Awesome: https://github.com/hexojs/awesome-hexo 1、初始化 需要node 环境&#xff0c;不再赘述node安装过程 推荐使用cnpm进行安装 npm install -g cnpm --registryhttps://regi…

PPO系列4 - Reward模型训练

流程&#xff1a; 训练Reward模型 训练数据&#xff1a; 相比给每条回答进行打分&#xff0c;人类更容易给出两者的比较结果。这样标注出来的数据&#xff0c;准确性更高。 模型&#xff1a; 可以使用和生成模型能力差不多的模型&#xff08;或者更强的模型&#xff09;&#x…

5.11如何用PyTorch实现ResNet34

ResNet34是由16个残差块和一个全局平局池化层和一个全连接层组成&#xff0c;即32个卷积层1个pooling层1和fc层。 训练的数据集是cifar10数据集&#xff0c;训练次数5&#xff0c;损失函数为CrossEntropyLoss()&#xff0c;optimizer torch.optim.SGD。 1.先定义残差块&#…

yolov,coco,voc标记的睡岗检测数据集,可识别在桌子上趴着睡,埋头睡觉,座椅上靠着睡,平躺着睡等多种睡姿的检测,6549张图片

yolov&#xff0c;coco,voc标记的睡岗检测数据集&#xff0c;可识别在桌子上趴着睡&#xff0c;埋头睡觉&#xff0c;座椅上靠着睡&#xff0c;平躺着睡等多种睡姿的检测&#xff0c;6549张图片 数据集分割 6549总图像数 训练组91&#xff05; 5949图片 有效集9&#x…

【C++游记】string的使用和模拟实现

枫の个人主页 你不能改变过去&#xff0c;但你可以改变未来 算法/C/数据结构/C Hello&#xff0c;这里是小枫。C语言与数据结构和算法初阶两个板块都更新完毕&#xff0c;我们继续来学习C的内容呀。C是接近底层有比较经典的语言&#xff0c;因此学习起来注定枯燥无味&#xf…

【深度学习量化交易7】miniQMT快速上手教程案例集——使用xtQuant进行历史数据下载篇

我是Mr.看海&#xff0c;我在尝试用信号处理的知识积累和思考方式做量化交易&#xff0c;应用深度学习和AI实现股票自动交易&#xff0c;目的是实现财务自由~ 目前我正在开发基于miniQMT的量化交易系统。 在前几篇的文章中讲到&#xff0c;我正在开发的看海量化交易系统&#x…

相差不超过k的最多数,最长公共子序列(一),排序子序列,体操队形,青蛙过河

相差不超过k的最多数 链接:相差不超过k的最多数 来源&#xff1a;牛客网 题目描述&#xff1a; 给定一个数组&#xff0c;选择一些数&#xff0c;要求选择的数中任意两数差的绝对值不超过 &#x1d458; 。问最多能选择多少个数&#xff1f; 输入描述: 第一行输入两个正整…

解决navicat 导出excel数字为科学计数法问题

一、原因分析 用程序导出的csv文件&#xff0c;当字段中有比较长的数字字段存在时&#xff0c;在用excel软件查看csv文件时就会变成科学技术法的表现形式。 其实这个问题跟用什么语言导出csv文件没有关系。Excel显示数字时&#xff0c;如果数字大于12位&#xff0c;它会自动转化…

C++3--内联函数、auto

1.内联函数 1.1概念 以inline修饰的函数叫做内联函数&#xff0c;编译时C编译器会在调用内联函数的地方展开&#xff0c;没有函数调用建立栈帧的开销&#xff0c;内联函数提升程序的效率 如果在上述函数前增加inline关键字将其改成内联函数&#xff0c;在编译期间编译器会用函…

AES 与 SM4 加密算法:深度解析与对比

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/literature?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;…

视频怎么转音频mp3?5种视频转音频的方法

在视频剪辑时&#xff0c;将视频中的音频提取出来并转换为MP3格式已成为许多人的需求。无论是为了制作音乐播放列表、剪辑音频片段&#xff0c;还是为了在其他设备上更方便地播放&#xff0c;将视频转换为音频MP3都显得尤为重要。下面将介绍五种实用的方法&#xff0c;帮助你轻…

Maven学习(传统Jar包管理、Maven依赖管理(导入坐标)、快速下载指定jar包)

目录 一、传统Jar包管理。 &#xff08;1&#xff09;基本介绍。 &#xff08;2&#xff09;传统的Jar包导入方法。 1、手动寻找Jar包。并放置到指定目录下。 2、使用IDEA的库管理功能。 3、配置环境变量。 &#xff08;3&#xff09;传统的Jar包管理缺点。 二、Maven。 &#…