JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

news2025/4/20 5:53:50

JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

目录

    • JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.中科院一区牛顿-拉夫逊优化优化算法+分解组合对比!VMD-NRBO-Transformer-BiLSTM多变量时间序列光伏功率预测,变分模态分解+牛顿-拉夫逊优化算法Transformer结合双向长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);
牛顿-拉夫逊优化算法算法(Newton-Raphson-based optimizer,NRBO)是一种全新的元启发式优化方法,其灵感来源主要基于两个关键原理:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO)。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到改进的搜索空间位置。TAO有助于NRBO避免局部最优陷阱。NRBO具有进化能力强、搜索速度快、寻优能力强的特点。这一成果由Sowmya等人于2024年2月发表在中科院2区顶级SCI期刊《Engineering Applications of Artificial Intelligence》上。。
2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;
3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
先运行main1VMD,进行vmd分解;再运行main2NRBOTransformerBiLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测


X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);



%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2259050.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决:IDEA中@Autowired自动注入MyBatis Mapper报红警告的几种解决方法

文章目录 解决:IDEA中Autowired自动注入MyBatis Mapper报红警告的几种解决方法问题描述:解决办法:1.将Autowired注解改成Resource2.给Autowired(required false)设置属性3.给Mapper层加注解Mapper/Repository4.改变写法,用RequiredArgsConst…

C语言-详细解答-重组字符串并16进制转10进制

1.题目要求 2.代码实现 #include <stdio.h> #include <ctype.h> #include <string.h>int hexToDec(char hex[]) {int len strlen(hex);int base 1;int dec 0;for (int i len - 1; i > 0; i--) {if (isdigit(hex[i])) {dec (hex[i] - 0) * base;} e…

sheng的学习笔记-AI-注意力模型(Attention Model)

Ai目录&#xff1a;sheng的学习笔记-AI目录-CSDN博客 先看下这两个文章&#xff1a; 序列模型&#xff1a;sheng的学习笔记-AI-序列模型&#xff08;Sequence Models&#xff09;&#xff0c;RNN,GRU,LSTM_音乐识别是一对多吗-CSDN博客 机器翻译 sheng的学习笔记-AI-自然语…

Arduino: Arduino IDE安装

目录 1.1 Arduino软件下载与安装 1.2 esp32_arduino的开发库安装 1.3 手动安装板支持包 1.1 Arduino软件下载与安装 Arduino官网下载地址&#xff1a;https://www.arduino.cc/en/software。 1.2 esp32_arduino的开发库安装 接下来安装esp32_arduino的开发库。 1.2.1 在线安…

在Ubuntu 22.04上搭建Kubernetes集群

Kubernetes 简介 什么是 Kubernetes&#xff1f; Kubernetes&#xff08;常简称为 K8s&#xff09;是一个强大的开源平台&#xff0c;用于管理容器化应用程序的部署、扩展和运行。它最初由 Google 设计并捐赠给 Cloud Native Computing Foundation&#xff08;CNCF&#xff0…

【ubuntu】将Chroma配置为LINUX服务

Chroma是一个轻量级向量数据库。既然是数据库&#xff0c;那么我希望它是能够长时间运行。最直接的方式是配置为service服务。 可惜官方没有去提供配置为服务的办法&#xff0c;而鄙人对docker又不是特别感冒。所以自己研究了下chroma配置为服务的方式。 系统&#xff1a;ubu…

【CSS in Depth 2 精译_071】11.4 思考字体颜色的对比效果 + 11.5 本章小结

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第四部分 视觉增强技术 ✔️【第 11 章 颜色与对比】 ✔️ 11.1 通过对比进行交流 11.1.1 模式的建立11.1.2 还原设计稿 11.2 颜色的定义 11.2.1 色域与色彩空间11.2.2 CSS 颜色表示法 11.2.2.1 RGB…

PHP:连接Grid++Report模板,实现循环打印

实现效果 模板 代码 cycle.php <html xmlns"http://www.w3.org/1999/xhtml"><head><title>Web报表(B/S报表)演示 - 不用报表插件展现报表而是直接输出</title><meta http-equiv"Content-Type" content"text/html; chars…

Ubuntu22.04安装docker desktop遇到的bug

1. 确认已启用 KVM 虚拟化 如果加载了模块&#xff0c;输出应该如下图。说明 Intel CPU 的 KVM 模块已开启。 否则在VMware开启宿主机虚拟化功能&#xff1a; 2. 下一步操作&#xff1a; Ubuntu | Docker Docs 3. 启动Docker桌面后发现账户登陆不上去&#xff1a; Sign in | …

STM32F103单片机HAL库串口通信卡死问题解决方法

在上篇文章 STM32F103单片机使用STM32CubeMX创建IAR串口工程 中分享了使用cubeMX直接生成串口代码的方法&#xff0c;在测试的过程中无意间发现&#xff0c;串口会出现卡死的问题。 当串口一次性发送十几个数据的时候&#xff0c;串口感觉像卡死了一样&#xff0c;不再接收数据…

qt QCommandLineParser详解

1、概述 QCommandLineParser是Qt框架中提供的一个类&#xff0c;专门用于解析命令行参数。它简化了命令行参数的处理过程&#xff0c;使得开发者能够轻松定义、解析和验证命令行选项和参数。QCommandLineParser适用于需要从命令行获取输入的控制台应用程序&#xff0c;以及需要…

默认插槽,具名插槽(v-slot:具名,name=‘ ‘),作用域插槽

在App.vue父组件需要两次调用MyDialog子组件&#xff0c;但是想要两个子组件中略有不同。 1.首先在父组件中引入子组件&#xff0c;定义子组件&#xff0c;展示组件标签 2.不一样的地方在子组件中放<slot>标签占位 3.在父组件中的子组件标签中写上不一样的内容&#xff0…

快速上手Neo4j图关系数据库

快速上手Neo4j图关系数据库 参考视频&#xff1a; 【IT老齐589】快速上手Neo4j网状关系图库 1 Neo4j简介 Neo4j是一个图数据库&#xff0c;是知识图谱的基础 在Neo4j中&#xff0c;数据的基本构建块包括&#xff1a; 节点(Nodes)关系(Relationships)属性(Properties)标签(Lab…

远程桌面防护的几种方式及优缺点分析

远程桌面登录是管理服务器最主要的方式&#xff0c;于是很多不法分子打起了远程桌面的歪心思。他们采用暴力破解或撞库的方式破解系统密码&#xff0c;悄悄潜入服务器而管理员不自知。 同时远程桌面服务中的远程代码执行漏洞也严重威胁着服务器的安全&#xff0c;攻击者可以利…

【机器学习】基础知识:拟合度(Goodness of Fit)

拟合度概念及意义 拟合度&#xff08;Goodness of Fit&#xff09;是衡量统计模型对数据解释能力的指标&#xff0c;用于评价模型对观测数据的拟合效果。在回归分析、分类模型或其他预测模型中&#xff0c;拟合度是模型性能的重要衡量标准。 1. 拟合度的作用 拟合度的主要作用…

康耐视智能相机(Insight)通过ModbusTCP发送字符串到倍福(BECKHOFF)PLC中

文章目录 1.背景2.分析3.实现3.1.PLC的ModbusTCP_Server3.1.1.安装TF6250-Modbus-TCP3.1.2.PLC设置 3.2.智能相机的ModbusTCP_Client3.2.1.了解ModbusTCP的协议3.2.2.根据协议写代码3.2.2.1.纯函数代码3.2.2.2.脚本代码 3.2.3.非脚本处理时的代码逻辑图3.2.4.关于代码的问题及解…

【设计模式系列】策略模式(二十四)

一、什么是策略模式 策略模式&#xff08;Strategy Pattern&#xff09;是软件设计模式中的一种行为型模式。它定义了一系列算法&#xff0c;并将每一个算法封装起来&#xff0c;使它们可以互换使用&#xff0c;算法的变化不会影响使用算法的用户。策略模式让算法的变化独立于…

Spark SQL 执行计划解析源码分析

本文用于记录Spark SQL执行计划解析的源码分析。文中仅对关键要点进行提及&#xff0c;无法面面具到&#xff0c;仅描述大体的框架。 Spark的Client有很多种&#xff0c;spark-sql&#xff0c;pyspark&#xff0c;spark- submit&#xff0c;R等各种提交方式&#xff0c;这里以…

(2)Spring Security - 了解UserDetailsService

目录 1.认识UserDetailsService1.1.认识UserDetails1.2.UserDetailsService的默认实现 -- InMemoryUserDetailsManager 2.用户信息存储在MySQL数据库中2.1.添加依赖2.2.配置MySQL和Mybatis2.3.在数据库中添加用户信息2.4.添加数据库实体类2.5.编写Mybatis代码2.6.实现UserDetai…

智能设备安全-固件逆向分析

固件逆向分析实验报告-20241022 使用固件常用逆向分析工具&#xff0c;对提供的固件进行文件系统提取&#xff0c;并记录逆向分析实验过程&#xff0c;提交实验报告&#xff08;报告要求图文并茂&#xff0c;对涉及到的关键步骤附截图说明&#xff09;。具体任务如下&#xff1…