【机器学习】机器学习的基本分类-监督学习-决策树-CART(Classification and Regression Tree)

news2025/1/14 9:20:24

CART(Classification and Regression Tree)

CART(分类与回归树)是一种用于分类和回归任务的决策树算法,提出者为 Breiman 等人。它的核心思想是通过二分法递归地将数据集划分为子集,从而构建一棵树。CART 算法既可以生成分类树,也可以生成回归树


1. CART 的特点

  1. 二叉树结构:CART 始终生成二叉树,每个节点只有两个分支(左子树和右子树)。
  2. 分裂标准不同
    • 对于分类任务,CART 使用**基尼指数(Gini Index)**作为分裂标准。
    • 对于回归任务,CART 使用**最小均方误差(MSE)**作为分裂标准。
  3. 支持剪枝:通过后剪枝减少过拟合。
  4. 处理连续和离散数据:支持连续特征的划分点选择。

2. CART 的基本流程

  1. 输入:训练数据集 D,目标变量类型(分类或回归)。
  2. 递归分裂
    • 按照基尼指数(分类)或均方误差(回归)选择最佳划分点。
    • 对数据集划分为两个子集,递归构造子树。
  3. 停止条件
    • 节点样本数量小于阈值。
    • 划分后不再能显著降低误差。
  4. 剪枝
    • 通过校验集性能优化,剪去不显著的分支。
  5. 输出:最终的二叉决策树。

3. 分类树

(1) 基尼指数

基尼指数(Gini Index)用于衡量一个节点的“纯度”,越小表示越纯:

Gini(D) = 1 - \sum_{k=1}^K \left(\frac{|D_k|}{|D|}\right)^2

其中:

  • D_k:类别 k 的样本数量。
  • K:类别的总数。

节点分裂的基尼指数计算为:

Gini_{split}(D) = \frac{|D_1|}{|D|} Gini(D_1) + \frac{|D_2|}{|D|} Gini(D_2)

最佳划分点是使 Gini_{split}(D) 最小的特征和对应的划分点。


(2) 示例:分类树

数据集

天气温度湿度风力是否运动
晴天30
晴天32
阴天28
雨天24正常
雨天20正常
  1. 计算每个特征的基尼指数

    • 对离散特征(如天气),分别计算不同类别划分后的基尼指数。
    • 对连续特征(如温度),尝试所有划分点,计算每个划分点的基尼指数。
  2. 选择最优特征和划分点

    • 选择基尼指数最小的划分点。
  3. 生成子树

    • 对每个子集递归分裂,直到满足停止条件。

4. 回归树

(1) 分裂标准

对于回归任务,CART 使用**均方误差(MSE)**作为分裂标准:

MSE(D) = \frac{1}{|D|} \sum_{i=1}^{|D|} \left(y_i - \bar{y}\right)^2

其中:

  • y_i:第 i 个样本的目标值。
  • \bar{y}​:节点中所有样本目标值的均值。

节点分裂的误差计算为:

MSE_{split}(D) = \frac{|D_1|}{|D|} MSE(D_1) + \frac{|D_2|}{|D|} MSE(D_2)

最佳划分点是使 MSE_{split}(D) 最小的特征和对应的划分点。


(2) 示例:回归树

假设我们有如下数据集(目标值为房价):

面积(平方米)房价(万元)
50150
60180
70210
80240
90270
  1. 尝试划分点

    • 例如,划分点为 656565。
    • 左子集:{50,60},右子集:{70, 80, 90}。
  2. 计算误差

    • 左子集的均值:\bar{y}_L = (150 + 180) / 2 = 165
    • 右子集的均值:\bar{y}_R = (210 + 240 + 270) / 3 = 240
    • 计算分裂后的总均方误差。
  3. 选择最佳划分点

    • 选择误差最小的划分点,继续构造子树。

 

5. 剪枝

CART 使用后剪枝来防止过拟合:

  1. 生成完全生长的决策树

  2. 计算子树的损失函数

    Cost(T) = \sum_{i=1}^n MSE(T_i) + \alpha \cdot |T|

    其中:

    • T_i:第 i 个叶子节点。
    • |T|:叶子节点的数量。
    • α:正则化参数,控制树的复杂度。
  3. 剪去对验证集性能提升不大的分支


6. CART 的优缺点

优点
  1. 生成二叉树,逻辑清晰,易于实现。
  2. 支持分类和回归任务。
  3. 支持连续特征和缺失值处理。
  4. 剪枝机制增强了泛化能力。
缺点
  1. 易受数据噪声影响,可能生成复杂的树。
  2. 对高维数据表现一般,无法处理稀疏特征。
  3. 生成的边界是轴对齐的,可能不适用于复杂分布。

7. 与其他决策树算法的比较

特点ID3C4.5CART
划分标准信息增益信息增益比基尼指数 / MSE
支持连续特征
树结构多叉树多叉树二叉树
剪枝后剪枝后剪枝
应用分类分类分类与回归

 8. 代码实现

以下是一个简单的 CART 分类树实现:

import numpy as np

# 计算基尼指数
def gini_index(groups, classes):
    total_samples = sum(len(group) for group in groups)
    gini = 0.0
    for group in groups:
        size = len(group)
        if size == 0:
            continue
        score = 0.0
        for class_val in classes:
            proportion = [row[-1] for row in group].count(class_val) / size
            score += proportion ** 2
        gini += (1 - score) * (size / total_samples)
    return gini

# 划分数据集
def split_data(data, index, value):
    left, right = [], []
    for row in data:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right

# 示例数据
dataset = [
    [2.771244718, 1.784783929, 0],
    [1.728571309, 1.169761413, 0],
    [3.678319846, 2.81281357, 0],
    [3.961043357, 2.61995032, 0],
    [2.999208922, 2.209014212, 1],
]

# 计算基尼指数
split = split_data(dataset, 0, 2.5)
gini = gini_index(split, [0, 1])
print("基尼指数:", gini)

输出结果

基尼指数: 0.30000000000000004

CART 是机器学习中非常经典的算法,同时也是随机森林、梯度提升决策树等模型的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2253888.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[高阶数据结构七]跳表的深度剖析

1.前言 跳表是一种查找结构&#xff0c;它有着与红黑树、AVL树和哈希表相同的作用&#xff0c;那么已经学习了红黑树和哈希表这种效率高的数据结构&#xff0c;那么为什么还需要学习跳表呢&#xff1f;--请听我娓娓道来。 本章重点&#xff1a; 本章着重讲解跳表的概念&#x…

基于MATLAB的信号处理工具:信号分析器

信号&#xff08;或时间序列&#xff09;是与特定时间相关的一系列数字或测量值&#xff0c;不同的行业和学科将这一与时间相关的数字序列称为信号或时间序列。生物医学或电气工程师会将其称为信号&#xff0c;而统计学家或金融定量分析师会使用时间序列这一术语。例如&#xf…

Linux Shell 脚本:一键在 Ubuntu 系统中打开和关闭网络代理

文章目录 shell脚本使用说明验证设置 shell脚本 以下是一个简单的 Shell 脚本&#xff0c;用于在 Ubuntu 系统中打开和关闭网络代理开关 #!/bin/bash# 检查传入的参数 if [ "$#" -ne 1 ]; thenecho "Usage: $0 <1|0>"echo "1: Enable proxy (…

Android ConstraintLayout 约束布局的使用手册

目录 前言 一、ConstraintLayout基本介绍 二、ConstraintLayout使用步骤 1、引入库 2、基本使用&#xff0c;实现按钮居中。相对于父布局的约束。 3、A Button 居中展示&#xff0c;B Button展示在A Button正下方&#xff08;距离A 46dp&#xff09;。相对于兄弟控件的约束…

【AI工具】强大的AI编辑器Cursor详细使用教程

目录 一、下载安装与注册 二、内置模型与配置 三、常用快捷键 四、项目开发与问答 五、注意事项与技巧 参考资料 近日&#xff0c;由四名麻省理工学院&#xff08;MIT&#xff09;本科生共同创立的Anysphere公司宣布&#xff0c;其开发的AI代码编辑器Cursor在成立短短两年…

Linux-GPIO应用编程

本章介绍应用层如何控制 GPIO&#xff0c;譬如控制 GPIO 输出高电平、或输出低电平。 只要是用到GPIO的外设&#xff0c;都有可能用得到这些操作方法。 照理说&#xff0c;GPIO的操作应该是由驱动层去做的&#xff0c;使用寄存器操作或者GPIO子系统之类的框架。 但是&#xff0…

前端开发 之 15个页面加载特效下【附完整源码】

文章目录 十二&#xff1a;铜钱3D圆环加载特效1.效果展示2.HTML完整代码 十三&#xff1a;扇形百分比加载特效1.效果展示2.HTML完整代码 十四&#xff1a;四色圆环显现加载特效1.效果展示2.HTML完整代码 十五&#xff1a;跷跷板加载特效1.效果展示2.HTML完整代码 十二&#xff…

STM32 DMA直接存储器存取原理及DMA转运模板代码

DMA简介&#xff1a; 存储器映像&#xff1a; 注意&#xff1a;FLASH是只读的&#xff0c;DMA不能写入&#xff0c;但是可以读取写到其他存储器里 变量是存在运行内存SRAM里的&#xff0c;常量&#xff08;const&#xff09;是放在程序存储器FLASH里的 DMA框图&#xff1a; …

transformers实现一个检索机器人(一)

简介 检索机器人是一种能够自动搜索和提供信息的系统&#xff0c;它可以帮助我们快速找到需要的信息。这类机器人通常使用自然语言处理&#xff08;NLP&#xff09;技术来理解用户的查询&#xff0c;并利用搜索引擎或数据库来获取相关信息。 那么我们要通过transforme实现什么…

开源ISP介绍(2)————嵌入式Vitis搭建

Vivado搭建参考前一节Vivado基于IP核的视频处理框架搭建&#xff1a; 开源ISP介绍&#xff08;1&#xff09;——开源ISP的Vivado框架搭建-CSDN博客 导出Hardware 在vivado中导出Hardware文件&#xff0c;成功综合—实现—生成比特流后导出硬件.xsa文件。&#xff08;注意导…

力扣-图论-2【算法学习day.52】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;&#xff09;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非…

【PlantUML系列】序列图(二)

目录 一、参与者 二、消息交互顺序 三、其他技巧 3.1 改变参与者的顺序 3.2 使用 as 重命名参与者 3.3 注释 3.4 页眉和页脚 一、参与者 使用 participant、actor、boundary、control、entity 和 database 等关键字来定义不同类型的参与者。例如&#xff1a; Actor&…

如何利用内链策略提升网站的整体权重?

内链是谷歌SEO中常常被低估的部分&#xff0c;实际上&#xff0c;合理的内链策略不仅能帮助提升页面间的关联性&#xff0c;还可以增强网站的整体权重。通过正确的内链布局&#xff0c;用户可以更流畅地浏览你的网站&#xff0c;谷歌爬虫也能更快地抓取到更多页面&#xff0c;有…

zotero中pdf-translate插件和其他插件的安装

1.工具–》插件 2.找插件 3.点击之后看到一堆插件 4.找到需要的&#xff0c;例如pdf-translate 5.点击进入&#xff0c;需要看一下md文档了解下&#xff0c;其实最重要的就是找到特有的(.xpi file) 6.点击刚刚的蓝色链接 7.下载并保存xpi文件 8.回到zotero&#xff0c;安装并使…

Datax遇到的坑

公司数据中台产品&#xff0c;要使用airflow调datax任务实现离线作业的同步。 一、python版本问题 执行python ..datax.py .json时 报错 在运行 Python 脚本时&#xff0c;代码中使用了 Python 2 的 print语法&#xff0c;当前的环境是 Python 3。在 Python 3 中&#xff0…

容易被遗忘的测试用例

网络服务器启动了吗&#xff1f;应用程序服务器启动了吗&#xff1f;数据库上线了吗&#xff1f;测试数据是否预先加载到数据库中&#xff1f;每当我们准备开始测试应用程序时&#xff0c;一切都应该已经准备妥当。 然而&#xff0c;当测试开始后&#xff0c;我们可能会漏掉一些…

机器学习与深度学习-2-Softmax回归从零开始实现

机器学习与深度学习-2-Softmax回归从零开始实现 1 前言 内容来源于沐神的《动手学习深度学习》课程&#xff0c;本篇博客对于Softmax回归从零开始实现进行重述&#xff0c;依旧是根据Python编程的PEP8规范&#xff0c;将沐神的template代码进行简单的修改。近期有点懒散哈哈哈…

文本生成类(机器翻译)系统评估

在机器翻译任务中常用评价指标&#xff1a;BLEU、ROGUE、METEOR、PPL。 这些指标的缺点&#xff1a;只能反应模型输出是否类似于测试文本。 BLUE&#xff08;Bilingual Evaluation Understudy&#xff09;&#xff1a;是用于评估模型生成的句子(candidate)和实际句子(referen…

保护数字资产:iOS 加固在当前安全环境中的重要性

随着互联网和手机的发展&#xff0c;APP在我们的日常生活中已经变得无处不在&#xff0c;各大平台的应用程序成为了黑客攻击的主要目标。尤其在 2024 年&#xff0c;随着数据泄露和隐私侵犯事件的频发&#xff0c;手机应用的安全问题再次成为公众关注的焦点。近期&#xff0c;多…

基于HTML和CSS的校园网页设计与实现

摘要 随着计算机、互联网与通信技术的进步&#xff0c;Internet在人们的学习、工作和生活中的地位也变得越来越高&#xff0c;校园网站已经成为学校与学生&#xff0c;学生与学生之间交流沟通的重要平台&#xff0c;对同学了解学校内发生的各种事情起到了重要的作用。学校网站…