机器学习与深度学习-2-Softmax回归从零开始实现
1 前言
内容来源于沐神的《动手学习深度学习》课程,本篇博客对于Softmax回归从零开始实现进行重述,依旧是根据Python编程的PEP8规范,将沐神的template代码进行简单的修改。近期有点懒散哈哈哈~以后争取周更,努力为大家提供一篇信息量满满、优质的博客文章。
最近重新整理了一下自己的Github仓库,博客中的代码我都会上传到:ZetingLiu/DeepLearning中,有需要的小伙伴请在这里下载。
2 问题背景–以图片分类为例
想象一下,您是一个百货公司的算法工程师。公司希望您设计一个识别货物的系统,可以自动识别货物是裤子、衣服、鞋子等等,这样也许可以节省一部分人员(拣货员)的人力资源成本。如果是您,您会怎么做?
首先,我希望这个系统能向人一样思考,那我就要提供一些学习资料,去学习这些货物大概长个什么样(特征提取),然后去广泛的学习记忆它们。等功夫到家,这个系统就可以顺利出色地完成我这个任务。而向人一样思考,就需要人工智能、深度学习的技术。让我们开始设计这个系统吧。
首先,为了多快好省的设计系统,我们导入一些现有的轮子(库):
import torch
from torchvision import transforms
from torchvision.datasets import FashionMNIST
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
这些库经常用于数据处理与深度学习训练。
接着,让我们提供一些学习资料,给系统学习一下吧。我们使用FashionMNIST数据集,给系统提供学习。
def load_data_fashion_mnist(input_batch_size):
"""
加载FashionMNIST数据集并返回数据迭代器
Load FashionMNIST dataset and return data iterators.
Args:
input_batch_size (int): 批量大小 / Batch size.
Returns:
Tuple[DataLoader, DataLoader]: 训练数据迭代器和测试数据迭代器 / Training and test data iterators.
"""
transform = transforms.ToTensor()
train_dataset = FashionMNIST(
root='./data', train=True, transform=transform, download=True
)
test_dataset = FashionMNIST(
root='./data', train=False, transform=transform, download=True
)
output_train_iter = DataLoader(
train_dataset, batch_size=input_batch_size, shuffle=True
)
input_test_iter = DataLoader(
test_dataset, batch_size=input_batch_size, shuffle=False
)
return output_train_iter, input_test_iter
批量大小可以由自己决定,数据也在Github仓库里提供,最好把数据与程序放在同一个文件夹下。
接着,我们定义一些用于训练的实参,并初始化一些模型参数:
# 设置全局参数 / Set global parameters
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
# 初始化模型参数 / Initialize model parameters
num_inputs, num_outputs = 784, 10
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)
在线性回归中,线性模型被用于进行回归任务,它是一个连续的问题,用一个连续的线性函数去预测房价的走势。在Softmax回归中,虽然它叫回归,但实际上在本问题中是一个离散的分类问题,它的输出是一个具体的类别。我希望在一个二维坐标系中,将不同的类型用一条直线分隔开,且希望数据到线性直线的距离越大越好,这样区分度更大以便用于之后的分类任务。
接下来我们正式定义Softmax函数,这个是分类任务的核心:
def softmax(x):
"""
计算输入x的softmax / Compute the softmax of input x.
Args:
x (torch.Tensor): 输入张量 / Input tensor.
Returns:
torch.Tensor: softmax后的张量 / Softmax tensor.
"""
x_exp = torch.exp(x - x.max(dim=1, keepdim=True).values)
partition = x_exp.sum(dim=1, keepdim=True)
return x_exp / partition
它的原理是把输入的数据映射到指数空间(这样不管是什么值,都是大于0的正数)中,输出一个概率。比如说,有十个图片,哪个像鞋子的概率更大,我就输出哪个,所以概率是Softmax的输出。
我们再定义一个网络,这是一个输入-输出映射:
def net(x):
"""
定义网络 / Define the network.
Args:
x (torch.Tensor): 输入张量 / Input tensor.
Returns:
torch.Tensor: 网络输出 / Network output.
"""
return softmax(torch.matmul(x.reshape((-1, W.shape[0])), W) + b)
它返回的就是图片的概率。
事实上分类任务也是一个优化问题,就像回归任务的目标函数是均方根误差一样,分类问题中,其目标函数是交叉熵函数:
def cross_entropy(y_hat, input_y):
"""
交叉熵损失函数 / Cross-entropy loss function.
Args:
y_hat (torch.Tensor): 模型预测值 / Predicted values.
input_y (torch.Tensor): 实际标签 / Actual labels.
Returns:
torch.Tensor: 交叉熵损失值 / Cross-entropy loss.
"""
return -torch.log(y_hat[range(len(y_hat)), input_y] + 1e-9)
加一个1e-9是防止真数为0,导致Bug。
我们总要设计一套准则,来评估我们的系统功能怎么样,不然公司为什么采取你的系统。所以我们设计一个衡量准确率的函数:
def accuracy(y_hat, input_y):
"""
计算准确率 / Compute accuracy.
Args:
y_hat (torch.Tensor): 模型预测值 / Predicted values.
input_y (torch.Tensor): 实际标签 / Actual labels.
Returns:
float: 准确率 / Accuracy.
"""
if y_hat.ndimension() > 1:
y_hat = y_hat.argmax(dim=1)
cmp = y_hat.type(input_y.dtype) == input_y
return float(cmp.sum())
在正式进入训练、评估之前,我们需要定义一个类,用于计算数据的类,这个实际上现有的深度学习框架是有的,不过我们既然是从0开始实现,我们有必要自己去写一遍这个类:
class Accumulator:
"""
用于累加数据的类 / Class for accumulating data.
"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
"""
累加多个参数的值 / Add values of multiple arguments.
Args:
*args: 要累加的值 / Values to accumulate.
"""
self.data = [a + float(bia) for a, bia in zip(self.data, args)]
def reset(self):
"""重置累加器 / Reset the accumulator."""
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
"""
获取指定索引的值 / Get value at specified index.
Args:
idx (int): 索引值 / Index.
Returns:
float: 累加的值 / Accumulated value.
"""
return self.data[idx]
接着我们要设计一个评估准确率的函数:
def evaluate_accuracy(input_net, data_iter):
"""
评估模型在数据集上的准确率 / Evaluate model accuracy on a dataset.
Args:
input_net (callable): 网络函数 / Network function.
data_iter (DataLoader): 数据迭代器 / Data iterator.
Returns:
float: 模型准确率 / Model accuracy.
"""
metric = Accumulator(2)
for input_X, input_y in data_iter:
metric.add(accuracy(input_net(input_X), input_y), input_y.numel())
return metric[0] / metric[1] if metric[1] > 0 else 0
现在,我们正式设计训练函数,让我们的系统学习一些知识,从而让它能够思考。
def train_epoch_ch3(input_net, input_train_iter, loss, input_updater):
"""
训练模型一个epoch / Train the model for one epoch.
Args:
input_net (callable): 网络函数 / Network function.
input_train_iter (DataLoader): 训练数据迭代器 / Training data iterator.
loss (callable): 损失函数 / Loss function.
input_updater (callable): 参数更新函数 / Parameter updater.
Returns:
Tuple[float, float]: 平均损失和准确率 / Average loss and accuracy.
"""
metric = Accumulator(3)
for input_X, input_y in input_train_iter:
y_hat = input_net(input_X)
loss_value = loss(y_hat, input_y).sum()
loss_value.backward()
input_updater()
W.grad.zero_()
b.grad.zero_()
metric.add(float(loss_value), accuracy(y_hat, input_y), input_y.numel())
return metric[0] / metric[2], metric[1] / metric[2]
系统学习的速度是快一点,还是慢一点,是通过学习率的设置实现的:
lr = 1e-3 # 学习率 / Learning rate
学习率过大,系统容易发散,始终完不成任务;学习率过小,虽然系统早晚收敛,但过程会缓慢。所以学习率是一个需要反复去调试的参数。而从学习率上,我们也能获得一些哲学–做事要把握度。
基于学习率,我们设计一个更新参数的函数:
def updater():
"""更新模型参数 / Update model parameters."""
global W, b
with torch.no_grad():
W -= lr * W.grad
b -= lr * b.grad
前面设计的训练函数是训练一个epoch的,接下来我们要设计一个训练整个epoch的训练函数:
def train_ch3(input_net, input_train_iter, input_test_iter, loss, input_num_epochs, input_updater):
"""
训练模型 / Train the model.
Args:
input_net (callable): 网络函数 / Network function.
input_train_iter (DataLoader): 训练数据迭代器 / Training data iterator.
input_test_iter (DataLoader): 测试数据迭代器 / Test data iterator.
loss (callable): 损失函数 / Loss function.
input_num_epochs (int): 训练轮数 / Number of training epochs.
input_updater (callable): 参数更新函数 / Parameter updater.
"""
for epoch in range(input_num_epochs):
train_metrics = train_epoch_ch3(
input_net, input_train_iter, loss, input_updater
)
test_acc = evaluate_accuracy(input_net, input_test_iter)
print(
f'epoch {epoch + 1}, loss {train_metrics[0]:.3f}, '
f'train acc {train_metrics[1]:.3f}, test acc {test_acc:.3f}'
)
接着,我们需要展示一下分类的结果,设计一个展现分类结果的函数:
def show_images(images, num_rows, num_cols, titles=None, scale=1.5):
"""
显示图片 / Display images.
Args:
images (List[torch.Tensor]): 图片列表 / List of images.
num_rows (int): 行数 / Number of rows.
num_cols (int): 列数 / Number of columns.
titles (List[str], optional): 图片标题 / Titles of images. Defaults to None.
scale (float, optional): 图片缩放比例 / Scale factor. Defaults to 1.5.
"""
figure_size = (num_cols * scale, num_rows * scale)
_, axes = plt.subplots(num_rows, num_cols, figsize=figure_size)
axes = axes.flatten()
for i, (img, ax) in enumerate(zip(images, axes)):
if isinstance(img, torch.Tensor):
img = img.numpy()
ax.imshow(img, cmap='gray')
ax.axis('off')
if titles:
ax.set_title(titles[i])
plt.tight_layout()
plt.show()
# 全局变量初始化
X = None
y = None
def predict_ch3(input_net, input_test_iter, n=6):
"""
预测并显示结果 / Predict and display results.
Args:
input_net (callable): 网络函数 / Network function.
input_test_iter (DataLoader): 测试数据迭代器 / Test data iterator.
n (int, optional): 显示图片数量 / Number of images to display. Defaults to 6.
"""
global X, y
for X, y in input_test_iter:
break
trues = [str(y[i].item()) for i in range(n)]
predictions = [
str(input_net(X).argmax(dim=1)[i].item()) for i in range(n)
]
titles = [true + '\n' + pred for true, pred in zip(trues, predictions)]
show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles)
最后,我们设置训练参数:
num_epochs = 50
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
predict_ch3(net, test_iter)
绘制一下Loss曲线、训练准确率、测试准确率,看看我们的系统怎么样。
这个是训练日志:
epoch 1, loss 0.9313, train acc 0.7327, test acc 0.7920
epoch 2, loss 0.6130, train acc 0.8031, test acc 0.8216
epoch 3, loss 0.5490, train acc 0.8192, test acc 0.8270
epoch 4, loss 0.5478, train acc 0.8197, test acc 0.8272
epoch 5, loss 0.5111, train acc 0.8322, test acc 0.8342
epoch 6, loss 0.5039, train acc 0.8317, test acc 0.8363
epoch 7, loss 0.5025, train acc 0.8354, test acc 0.8331
epoch 8, loss 0.4808, train acc 0.8394, test acc 0.8350
epoch 9, loss 0.4834, train acc 0.8387, test acc 0.8353
epoch 10, loss 0.4827, train acc 0.8396, test acc 0.8139
epoch 11, loss 0.4742, train acc 0.8426, test acc 0.8231
epoch 12, loss 0.4672, train acc 0.8442, test acc 0.8383
epoch 13, loss 0.4695, train acc 0.8427, test acc 0.8405
epoch 14, loss 0.4808, train acc 0.8400, test acc 0.8451
epoch 15, loss 0.4707, train acc 0.8431, test acc 0.8358
epoch 16, loss 0.4502, train acc 0.8472, test acc 0.8409
epoch 17, loss 0.4768, train acc 0.8425, test acc 0.8412
epoch 18, loss 0.4563, train acc 0.8477, test acc 0.8443
epoch 19, loss 0.4609, train acc 0.8459, test acc 0.8376
epoch 20, loss 0.4637, train acc 0.8459, test acc 0.8427
epoch 21, loss 0.4531, train acc 0.8479, test acc 0.8283
epoch 22, loss 0.4575, train acc 0.8472, test acc 0.8395
epoch 23, loss 0.4539, train acc 0.8466, test acc 0.8340
epoch 24, loss 0.4527, train acc 0.8477, test acc 0.8442
epoch 25, loss 0.4463, train acc 0.8503, test acc 0.8399
epoch 26, loss 0.4394, train acc 0.8517, test acc 0.8372
epoch 27, loss 0.4524, train acc 0.8491, test acc 0.8344
epoch 28, loss 0.4317, train acc 0.8532, test acc 0.8425
epoch 29, loss 0.4610, train acc 0.8473, test acc 0.8398
epoch 30, loss 0.4411, train acc 0.8509, test acc 0.8435
epoch 31, loss 0.4308, train acc 0.8536, test acc 0.8354
epoch 32, loss 0.4416, train acc 0.8517, test acc 0.8344
epoch 33, loss 0.4391, train acc 0.8519, test acc 0.8381
epoch 34, loss 0.4342, train acc 0.8537, test acc 0.8437
epoch 35, loss 0.4317, train acc 0.8540, test acc 0.8366
epoch 36, loss 0.4319, train acc 0.8530, test acc 0.8441
epoch 37, loss 0.4373, train acc 0.8524, test acc 0.8285
epoch 38, loss 0.4438, train acc 0.8502, test acc 0.8389
epoch 39, loss 0.4339, train acc 0.8527, test acc 0.8409
epoch 40, loss 0.4311, train acc 0.8539, test acc 0.8440
epoch 41, loss 0.4358, train acc 0.8530, test acc 0.8406
epoch 42, loss 0.4334, train acc 0.8540, test acc 0.8440
epoch 43, loss 0.4374, train acc 0.8527, test acc 0.8428
epoch 44, loss 0.4329, train acc 0.8535, test acc 0.8364
epoch 45, loss 0.4348, train acc 0.8527, test acc 0.8379
epoch 46, loss 0.4293, train acc 0.8541, test acc 0.8390
epoch 47, loss 0.4265, train acc 0.8554, test acc 0.8439
epoch 48, loss 0.4253, train acc 0.8554, test acc 0.8457
epoch 49, loss 0.4276, train acc 0.8553, test acc 0.8438
epoch 50, loss 0.4301, train acc 0.8542, test acc 0.8427
损失曲线图与训练准确率、测试准确率的图如下:
由图可以看出,我们的系统能达到80%以上的准确率。打个比方,有100的图片,我们的系统可以正确识别出八十多个。这算是一个还算不错的准确率,不过在实际生活中显然不能允许这样。因此日后,我们可以一起设计一个精度更高的分类系统,那今天我们的内容就结束了。
3 结果讨论
实际上训练效果还与学习参数有关,我把学习率降低,训练日志如下:
epoch 1, loss 0.9046, train acc 0.7268, test acc 0.7712
epoch 2, loss 0.6373, train acc 0.7970, test acc 0.7953
epoch 3, loss 0.5789, train acc 0.8131, test acc 0.8047
epoch 4, loss 0.5475, train acc 0.8220, test acc 0.8140
epoch 5, loss 0.5267, train acc 0.8266, test acc 0.8170
epoch 6, loss 0.5116, train acc 0.8316, test acc 0.8211
epoch 7, loss 0.5003, train acc 0.8340, test acc 0.8164
epoch 8, loss 0.4913, train acc 0.8355, test acc 0.8250
epoch 9, loss 0.4835, train acc 0.8389, test acc 0.8218
epoch 10, loss 0.4770, train acc 0.8403, test acc 0.8262
epoch 11, loss 0.4715, train acc 0.8419, test acc 0.8280
epoch 12, loss 0.4668, train acc 0.8432, test acc 0.8302
epoch 13, loss 0.4625, train acc 0.8451, test acc 0.8315
epoch 14, loss 0.4583, train acc 0.8463, test acc 0.8321
epoch 15, loss 0.4549, train acc 0.8465, test acc 0.8333
epoch 16, loss 0.4515, train acc 0.8477, test acc 0.8338
epoch 17, loss 0.4494, train acc 0.8481, test acc 0.8312
epoch 18, loss 0.4462, train acc 0.8492, test acc 0.8342
epoch 19, loss 0.4436, train acc 0.8501, test acc 0.8352
epoch 20, loss 0.4415, train acc 0.8513, test acc 0.8346
epoch 21, loss 0.4397, train acc 0.8511, test acc 0.8349
epoch 22, loss 0.4375, train acc 0.8515, test acc 0.8355
epoch 23, loss 0.4359, train acc 0.8522, test acc 0.8374
epoch 24, loss 0.4341, train acc 0.8525, test acc 0.8351
epoch 25, loss 0.4326, train acc 0.8528, test acc 0.8369
epoch 26, loss 0.4309, train acc 0.8539, test acc 0.8367
epoch 27, loss 0.4296, train acc 0.8539, test acc 0.8376
epoch 28, loss 0.4282, train acc 0.8549, test acc 0.8339
epoch 29, loss 0.4269, train acc 0.8542, test acc 0.8389
epoch 30, loss 0.4258, train acc 0.8554, test acc 0.8384
epoch 31, loss 0.4244, train acc 0.8552, test acc 0.8401
epoch 32, loss 0.4236, train acc 0.8559, test acc 0.8401
epoch 33, loss 0.4221, train acc 0.8559, test acc 0.8393
epoch 34, loss 0.4211, train acc 0.8571, test acc 0.8400
epoch 35, loss 0.4206, train acc 0.8560, test acc 0.8395
epoch 36, loss 0.4190, train acc 0.8576, test acc 0.8410
epoch 37, loss 0.4182, train acc 0.8577, test acc 0.8405
epoch 38, loss 0.4175, train acc 0.8584, test acc 0.8397
epoch 39, loss 0.4167, train acc 0.8579, test acc 0.8401
epoch 40, loss 0.4159, train acc 0.8583, test acc 0.8407
epoch 41, loss 0.4150, train acc 0.8583, test acc 0.8384
epoch 42, loss 0.4143, train acc 0.8590, test acc 0.8415
epoch 43, loss 0.4138, train acc 0.8590, test acc 0.8416
epoch 44, loss 0.4135, train acc 0.8590, test acc 0.8410
epoch 45, loss 0.4120, train acc 0.8600, test acc 0.8410
epoch 46, loss 0.4116, train acc 0.8600, test acc 0.8412
epoch 47, loss 0.4107, train acc 0.8594, test acc 0.8430
epoch 48, loss 0.4102, train acc 0.8600, test acc 0.8412
epoch 49, loss 0.4099, train acc 0.8596, test acc 0.8421
epoch 50, loss 0.4089, train acc 0.8610, test acc 0.8398
Loss曲线与训练准确率、测试准确率图:
由Loss曲线可以看出,实际上这个曲线还可以再收敛于一个更小的Loss Value,且相比之前的更大的学习率的损失曲线,这一条更加平滑。由于只是一个示例,我的epoch只设置到了50。而训练的准确率有些略高于测试的准确率,有可能有过拟合行为,但在这个案例中我们不往这方面扩展,之后会扩展一下这个内容。分类的可视化结果:
上面是真实类别,下面是预测类别。我们的运气很好,这轮训练全部预测正确。后续我们将继续探讨如何正确地提高分类的准确率。