Hbase整合Mapreduce案例1 hdfs数据上传至hbase中——wordcount

news2025/1/15 13:20:55

目录

  • 整合结构
  • 准备
  • java API 编写
    • pom.xml
    • Main.java
    • Map.java
    • Reduce
  • 运行

整合结构

在这里插入图片描述

准备

  1. 上传hdfs data.txt数据

data.txt

I am wunaiieq
QAQ
123456
Who I am
In todays interconnected world the role of technology cannot be overstated It has revolutionized the way we live work and communicate From smartphones to social media platforms technology has made the world more accessible and connected Than ever before It has enabled us to stay informed and connected with people across the globe allowing for instant communication and collaboration The impact of technology on education healthcare and business has been profound It has transformed the way we learn access medical information and conduct business operations As we continue to advance technologically it is essential that we understand and adapt to these changes to fully harness their potential

hdfs

 hdfs dfs -put data.txt /input
  1. 制作hbase表格

Hbase shell

create "wunaiieq:wordcount","colf"

java API 编写

pom.xml

包含hbase和hdfs的依赖文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.hbase</groupId>
    <artifactId>hdfs2hbase</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <hadoop.version>3.1.3</hadoop.version>
        <hbase.version>2.2.3</hbase.version>
    </properties>

    <dependencies>
        <!-- Hadoop Dependencies -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-yarn-api</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-streaming</artifactId>
            <version>${hadoop.version}</version>
        </dependency>

        <!-- HBase Dependencies -->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-common</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-mapreduce</artifactId>
            <version>${hbase.version}</version>
        </dependency>

        <!-- Other Dependencies -->
        <dependency>
            <groupId>com.google.protobuf</groupId>
            <artifactId>protobuf-java</artifactId>
            <version>3.19.1</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>1.7.25</version>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.17</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>RELEASE</version>
            <scope>compile</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <!--声明-->
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.3.0</version>
                <!--具体配置-->
                <configuration>
                    <archive>
                        <manifest>
                            <!--jar包的执行入口-->
                            <mainClass>org.wunaiieq.hdfs2hbase.Main</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <!--描述符,此处为预定义的,表示创建一个包含项目所有依赖的可执行 JAR 文件;
                        允许自定义生成jar文件内容-->
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <!--执行配置-->
                <executions>
                    <execution>
                        <!--执行配置ID,可修改-->
                        <id>make-assembly</id>
                        <!--执行的生命周期-->
                        <phase>package</phase>
                        <goals>
                            <!--执行的目标,single表示创建一个分发包-->
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Main.java

程序主类,和原有的Mapreduce相比逻辑上没有多大的区别
不过原有的mr程序调用的reduce接口的实现类
现在调用的则是TableReducer接口的实现类

package org.wunaiieq.hdfs2hbase;


import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.streaming.io.InputWriter;
import org.apache.hadoop.hbase.mapreduce.*;


public class Main {
    public static void main(String[] args) throws Exception {
        //配置文件,写在resources目录下
        Job job =Job.getInstance(new Configuration());
        //入口类
        job.setJarByClass(Main.class);
        //文件输入路径(命令行手动输入)
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        //直接规定,不过我是打jar包,不推荐这么做
        //FileInputFormat.setInputPaths(job,new Path("/input/data.txt"));
        //Mapper类
        job.setMapperClass(Map.class);
        job.setMapOutputKeyClass(Text.class);//k2
        job.setMapOutputValueClass(IntWritable.class);//v2
        //Redecer类,由于写入Hbase,因此此处做出一些修改
        TableMapReduceUtil.initTableReducerJob(
                "wunaiieq:wordcount",//输入表的名称
                Reduce.class,//Reducer类,需要实现TableReducer接口
                job,//job实例,当前的作业
                null,//输入格式类的类型
                null,//输入键的类类型
                null,//输入值的类类型
                null,//输出键的类类型
                false//是否将 HBase 和 Hadoop 的相关依赖 JAR 文件添加到作业的 classpath 中。
        );
        job.waitForCompletion(true);

    }
}

Map.java

没什么需要特别注明的,Map层并没有什么修改

package org.wunaiieq.hdfs2hbase;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
public class Map extends Mapper<LongWritable, Text,Text, IntWritable> {

    private Text k2 =new Text();
    private IntWritable v2 =new IntWritable(1);
    @Override
    protected void map(LongWritable k1, Text v1,Context context)
            throws IOException, InterruptedException {
        //将输入文本转成String类型的变量
        String data =v1.toString();
        //切分单词
        String words[]=data.split(" ");
        for(String word :words){
            //对k2v2进行赋值,k2应为单词,作为后续的rowkey
            k2.set(word);
            //v2应为1,每次统计时算1个
            v2.set(1);
            context.write(k2,v2);
            //做法相同
            //context.write(new Text(word),new IntWritable(1));
        }
    }
}


Reduce

和一般MR程序不同,此处实现TableReducer的接口

package org.wunaiieq.hdfs2hbase;

import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
/**
 * 查看代码原文<br>
 * public abstract class TableReducer < k3, v3, k4> <br>
 *     extends Reducer< k3, v3, k4, Mutation> <br>
 *这里的Mutation也就是v4,这个类则是输出到hbase中
 * **/
//                                        K3    V3          K4
public class Reduce extends TableReducer<Text, IntWritable,Text> {

    @Override
    protected void reduce(Text k3, Iterable<IntWritable> v3, Reducer<Text, IntWritable, Text, Mutation>.Context context) throws IOException, InterruptedException {
        int sum =0;
        for (IntWritable value :v3){
            sum+=value.get();
        }
        //创建Put对象,设置rowkey为k3(单词)
        Put put =new Put(Bytes.toBytes(k3.toString()));
        //指定列
        put.addColumn("colf".getBytes(),"count".getBytes(),Bytes.toBytes(sum));
        //输出k4,正常来讲,k4应该等于k3,但此处没有多大作用,因为是输出到hbase中,这一步仅是作为规范
        Text k4 =k3;
        context.write(k4,put);
    }
}


运行

注意下哈,这里是hadoop jar

hadoop jar hdfs2hbase-1.0-SNAPSHOT-jar-with-dependencies.jar /input/data.txt

hadoop jar和java -jar的区别
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2253830.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

temu登录接口逆向分析(含Py纯算)

文章目录 1. 写在前面2. 接口分析3. 算法还原 【&#x1f3e0;作者主页】&#xff1a;吴秋霖 【&#x1f4bc;作者介绍】&#xff1a;擅长爬虫与JS加密逆向分析&#xff01;Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python…

python中什么叫做脚本

Python一种面向对象的动态类型语言&#xff0c;是一种脚本语言&#xff0c;常用于各种服务器的维护和自动化运行。它具有丰富和强大的库。它常被称为胶水语言&#xff0c;因为它能够把用其他语言制作的各种模块很轻松地联结在一起。 以.py 结尾的文件就是Python脚本&#xff0…

全面解析 Transformer:改变深度学习格局的神经网络架构

目录 一、什么是 Transformer&#xff1f; 二、Transformer 的结构解析 1. 编码器&#xff08;Encoder&#xff09; 2. 解码器&#xff08;Decoder&#xff09; 3. Transformer 模型结构图 三、核心技术&#xff1a;注意力机制与多头注意力 1. 注意力机制 2. 多头注意力&…

虚幻引擎---材质篇

一、基础知识 虚幻引擎中的材质&#xff08;Materials&#xff09; 定义了场景中对象的表面属性&#xff0c;包括颜色、金属度、粗糙度、透明度等等&#xff1b;可以在材质编辑器中可视化地创建和编辑材质&#xff1b;虚幻引擎的渲染管线的着色器是用高级着色语言&#xff08;…

基于Matlab计算机视觉的车道线识别与前车检测系统研究

随着自动驾驶技术的发展&#xff0c;车道线识别和前车检测成为智能驾驶系统中的核心技术之一。本实训报告围绕基于计算机视觉的车道线识别与前车检测系统展开&#xff0c;旨在通过处理交通视频数据&#xff0c;实时检测车辆所在车道及其与前车的相对位置&#xff0c;从而为车道…

vue.js学习(day 19)

自定义创建项目 ESlint 代码规范 代码规范错误 手动修正 自动修正 settings.json {"emmet.triggerExpansionOnTab": true,"editor.fontSize": 25,// 当保存的时候&#xff0c;eslint自动帮我们修复错误"editor.codeActionsOnSave": {&qu…

物联网——WatchDog(监听器)

看门狗简介 独立看门狗框图 看门狗原理&#xff1a;定时器溢出&#xff0c;产生系统复位信号&#xff1b;若定时‘喂狗’则不产生系统复位信号 定时中断基本结构&#xff08;对比&#xff09; IWDG键寄存器 独立看门狗超时时间 WWDG(窗口看门狗) WWDG特性 WWDG超时时间 由于…

医疗挂号|基于springBoot的医疗挂号管理设计与实现(附项目源码+论文+数据库)

目录 一、摘要 二、相关技术 三、系统设计 四、数据库设计 五、核心代码 六、论文参考 七、源码获取 一、摘要 在如今社会上&#xff0c;关于信息上面的处理&#xff0c;没有任何一个企业或者个人会忽视&#xff0c;如何让信息急速传递&#xff0c;并且归档储存…

lobeChat安装

一、安装Node.js version > v18.17.0 二、下载 cd F:\AITOOLS\LobeChat git clone https://github.com/lobehub/lobe-chat.git &#xff08;下载要是失败就手动下&#xff1a;https://codeload.github.com/lobehub/lobe-chat/zip/refs/heads/main&#xff09; npm install …

电子应用设计方案-38:智能语音系统方案设计

智能语音系统方案设计 一、引言 智能语音系统作为一种便捷、自然的人机交互方式&#xff0c;正逐渐在各个领域得到广泛应用。本方案旨在设计一个高效、准确、功能丰富的智能语音系统。 二、系统概述 1. 系统目标 - 实现高准确率的语音识别和自然流畅的语音合成。 - 支持多种语…

AWS创建ec2实例并连接成功

aws创建ec2实例并连接 aws创建ec2并连接 1.ec2创建前准备 首先创建一个VPC隔离云资源并且有公有子网 2.创建EC2实例 1.启动新实例或者创建实例 2.创建实例名 3.选择AMI使用linux(HVM) 4.选择实例类型 5.创建密钥对下载到本地并填入密钥对名称 6.选择自己创建的VPC和公有子网…

数字逻辑——二进制

目录 1 信息与编码 1.1 什么是信息&#xff1f; 1.2 什么是编码&#xff1f; 2 数制和码制 2.1 数制 3 一些基本概念 3.1 位&#xff08;bit&#xff09; 3.2 字节&#xff08;byte&#xff09; 3.3 数据量的大小表示符号 4 二进制 4.1 二进制简介 4.2 二进制的…

初识TCP(编写回显服务器)

目录 初识TCP&#xff08;编写回显服务器&#xff09;TCP相关的API服务器代码实现客户端代码实现部分代码解释注意事项效果展示 初识TCP&#xff08;编写回显服务器&#xff09; TCP相关的API ServerSocket &#xff1a; 这是socket类&#xff0c;对应到网卡&#xff0c;但是…

ElasticSearch7.x入门教程之全文搜索聚合分析(十)

文章目录 前言一、指标聚合1、统计最大值&#xff1a;Max Aggregation2、统计最小值&#xff1a;Min Aggregation3、统计平均值&#xff1a;Avg Aggregation4、求和&#xff1a;Sum Aggregation5、Cardinality Aggregation6、基本统计&#xff1a;Stats Aggregation7、高级统计…

【Linux】DNS服务配置

DNS DNS是什么 DNS是Domain Name System的缩写,即域名系统。它是一种用来将域名转化为IP地址的系统。在互联网中,每个网站都有一个唯一的IP地址,但是人们更习惯使用简单易记的域名来访问网站。DNS的作用就是将这些域名转化为对应的IP地址,使得人们可以通过域名来访问网站…

第31天:安全开发-JS应用WebPack打包器第三方库JQuery安装使用安全检测

时间轴&#xff1a; 演示案例&#xff1a; 打包器-WebPack-使用&安全 第三方库-JQuery-使用&安全 打包器-WebPack-使用&安全 参考&#xff1a;https://mp.weixin.qq.com/s/J3bpy-SsCnQ1lBov1L98WA Webpack 是一个模块打包器。在 Webpack 中会将前端的所有资源…

开发者如何使用GCC提升开发效率Opencv操作

看此篇前请先阅读 https://blog.csdn.net/qq_20330595/article/details/144134160?spm=1001.2014.3001.5502 https://blog.csdn.net/qq_20330595/article/details/144134160?spm=1001.2014.3001.5502 https://blog.csdn.net/qq_20330595/article/details/144216351?spm=1001…

使用PaddlePaddle实现线性回归模型

目录 ​编辑 引言 PaddlePaddle简介 线性回归模型的构建 1. 准备数据 2. 定义模型 3. 准备数据加载器 4. 定义损失函数和优化器 5. 训练模型 6. 评估模型 7. 预测 结论 引言 线性回归是统计学和机器学习中一个经典的算法&#xff0c;用于预测一个因变量&#xff0…

图像处理网络中的模型水印

论文信息&#xff1a;Jie Zhang、Han Fang、Weiming Zhang、Wenbo Zhou、Hao Cui、Hao Cui、Nenghai Yu&#xff1a;Model Watermarking for Image Processing Networks 本文首次提出了图像处理网络中深度水印问题&#xff0c;将知识产权问题引入图像处理模型 提出了第一个深…

全面UI组件库Telerik 2024 Q4全新发布——官方宣布支持.NET 9

Telerik DevCraft包含一个完整的产品栈来构建您下一个Web、移动和桌面应用程序。它使用HTML和每个.NET平台的UI库&#xff0c;加快开发速度。Telerik DevCraft提供最完整的工具箱&#xff0c;用于构建现代和面向未来的业务应用程序&#xff0c;目前提供UI for ASP.NET MVC、Ken…