Opencv+ROS实现颜色识别应用

news2024/11/27 5:37:36

目录

一、工具

二、原理

概念

本质

三、实践

 添加发布话题

主要代码

四、成果

五、总结


一、工具

opencv+ros

ubuntu18.04

摄像头

二、原理

概念

彩色图像:RGB(红,绿,蓝)

HSV图像:H(色调)S(饱和度)V(亮度)

色调(H:hue):用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,品红为300°;
饱和度(S:saturation):取值范围为0.0~1.0,值越大,颜色越饱和。
亮度(V:value):取值范围为0(黑色)~255(白色)。

但是在opencv中引用的范围有所不同,给出下表。

本质

颜色识别本质就是在图像上提取出你想要的颜色阈值,然后通过降噪优化模型,轮廓检测进行框选。

要点:

  • RGB转HSV
  • 所需颜色阈值(hsv),并二值化
  • 腐蚀操作除噪,Canny算法进行边缘检测
  • 最后通过findContours()函数找出轮廓坐标

三、实践

读取摄像头

    VideoCapture cap(video_device);  //dev/video0

RGB转HSV

cvtColor(frame, imghsv, COLOR_BGR2HSV);

直方图均衡化

split(imghsv, hsvSplit);
equalizeHist(hsvSplit[2], hsvSplit[2]);
merge(hsvSplit, imghsv);

直方图均衡化是一种简单有效的图像增强技术,用于增强动态范围偏小的图像的对比度

定义颜色阈值,这里选取红色

    Scalar lower_red(156, 43, 46);
    Scalar upper_red(180, 255, 255); // 定义红色的HSV范围

    inRange(imghsv, lower_red, upper_red, mask);//二值化红色部分

inRange()函数就是检测imghsv内所有像素是否在lower-upper之间,如果是则设为255,也就是白色。输出的是二值图。

用腐蚀,膨胀操作去噪点

  Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3));
  morphologyEx(mask, mask, MORPH_OPEN, kernel);//开运算
  morphologyEx(mask, mask, MORPH_CLOSE, kernel);//闭运算

腐蚀,膨胀操作的对象是二值化图像

  • 腐蚀:变精细
  • 膨胀:变粗矿
  • 开运算:先腐蚀后膨胀 消去一个黑图中的很多小白点
  • 闭运算:先膨胀后腐蚀 消去一个白图中的很多小黑点
  • 梯度运算:膨胀-腐蚀

 高斯滤波,Canny边缘检测

    GaussianBlur(mask, mask, Size(3, 3), 0);//高斯滤波
    Canny(mask, mask, 100, 250);//canny算子边缘检测

 Canny()函数参数表明:

第一个:InputArray类型的image,输入图像
第二个:OutputArray类型的edges,输出的边缘图
第三个:double类型的threshold1,第一个滞后性阈值
第四个:double类型的threshold2,第二个滞后性阈值

 Canny过程为

  1. 高斯滤波获得平滑图像
  2. 计算每个像素点的梯度强度和方向
  3. 应用非极大值抑制,消除边缘检测带来的杂散响应
  4. 双阈值确定真实或潜在的边缘
  5. 抑制弱化边缘完成边缘检测

然后开始找轮廓

findContours()函数

findContours(mask,contours,hierarchy,RETR_EXTERNAL,CHAIN_APPROX_SIMPLE,Point());  

第一个参数:输入图像

第二个参数:所有轮廓

第三个参数:表示第i个轮廓的后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号

第四个参数:RETR_EXTERNAL只检测最外围轮廓

第五个参数:CHAIN_APPROX_SIMPLE 仅保存轮廓的拐点信息

寻找最大轮廓

 vector<double> Area(contours.size());
                        //寻找最大面积的轮廓
                        for (int i = 1; i < contours.size(); i++) {
                            Area[i] = contourArea(contours[i]);
                            if (Area[i] > Area[max]) {
                                max = i;
                            }   
                        }
            Rect boundRect = boundingRect(Mat(contours[max]));
            circle(frame, Point(boundRect.x + boundRect.width/2, boundRect.y + boundRect.height/2), 5, Scalar(0,0,255), -1);

boundingRect()函数

表示包围轮廓的最大矩形

返回四个参数

第一个:boundRect.x

第二个:boundRect.y

第三个:boundRect.width

第四个:boundRect.hight

左上角顶点的像素坐标值及矩形边界的宽和高

然后将矩形在原画面画出即可

ROS_INFO("x:%d,y:%d",boundRect.x+ boundRect.width/2, boundRect.y + boundRect.height/2);
rectangle(frame, Point(boundRect.x, boundRect.y), Point(boundRect.x + boundRect.width, boundRect.y + boundRect.height), Scalar( 0, 0, 255), 2);

 添加发布话题

毕竟是在ros下编写的,我们要把像素坐标发布出去,这里自定义一个消息类型

boundingbox.msg

用来表示类和坐标值

主要代码

 while (ros::ok()) 
    {  
        cap >> frame;  //摄像头画面赋给frame
        if(!frame.empty()) //画面是否正常
        {  
            /*对图片二次处理*/

            cvtColor(frame, imghsv, COLOR_BGR2HSV);// 将图像转换为HSV颜色空间

            split(imghsv, hsvSplit);
		    equalizeHist(hsvSplit[2], hsvSplit[2]);
		    merge(hsvSplit, imghsv);

            inRange(imghsv, lower_red, upper_red, mask);//二值化红色部分

            Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
            morphologyEx(mask, mask, MORPH_OPEN, kernel);//开运算
            morphologyEx(mask, mask, MORPH_CLOSE, kernel);//闭运算
            
            GaussianBlur(mask, mask, Size(5, 5), 0);//高斯滤波
            Canny(mask, mask, 150, 100);//canny算子边缘检测

            vector<vector<Point> > contours;
            vector<Vec4i> hierarchy;
            findContours(mask,contours,hierarchy,RETR_EXTERNAL,CHAIN_APPROX_SIMPLE,Point());  
            //ROS_INFO("个数为%d",int(contours.size()));
            vector<double> Area(contours.size());
            if(contours.size() > 0 )
            {
                       //寻找最大面积的轮廓
                        for (int i = 1; i < contours.size(); i++) {
                            Area[i] = contourArea(contours[i]);
                            if (Area[i] > Area[max]) {
                                max = i;
                            }   
                        }
            Rect boundRect = boundingRect(Mat(contours[max]));
            circle(frame, Point(boundRect.x + boundRect.width/2, boundRect.y + boundRect.height/2), 5, Scalar(0,0,255), -1);
            ROS_INFO("x:%d,y:%d",boundRect.x+ boundRect.width/2, boundRect.y + boundRect.height/2);
            rectangle(frame, Point(boundRect.x, boundRect.y), Point(boundRect.x + boundRect.width, boundRect.y + boundRect.height), Scalar( 0, 0, 255), 2);
            detect_msg.Class = "red";
            detect_msg.xmin = boundRect.x;
            detect_msg.xmax=boundRect.x + boundRect.width;
            detect_msg.ymin=boundRect.y;
            detect_msg.ymax= boundRect.y + boundRect.height;
            }

四、成果

运行画面

 查看话题

这里识别画面内所有红色区域

五、总结

写代码过程中还是遇到很多问题的,不知道是opencv版本不兼容的问题还是哪里我编写不细致,节点总是挂掉。

但还是能完成基本需求。

这里把报错留下,希望有大佬能帮帮我

OpenCV Error: Assertion failed (npoints >= 0 && (depth == CV_32F || depth == CV_32S)) in pointSetBoundingRect, file /build/opencv-L2vuMj/opencv-3.2.0+dfsg/modules/imgproc/src/shapedescr.cpp, line 466
terminate called after throwing an instance of 'cv::Exception'
  what():  /build/opencv-L2vuMj/opencv-3.2.0+dfsg/modules/imgproc/src/shapedescr.cpp:466: error: (-215) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function pointSetBoundingRect

应该是boundingRect()函数的问题,但不知道问题在哪

欢迎评论区指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2248205.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决 java -jar 报错:xxx.jar 中没有主清单属性

问题复现 在使用 java -jar xxx.jar 命令运行 Java 应用程序时&#xff0c;遇到了以下错误&#xff1a; xxx.jar 中没有主清单属性这个错误表示 JAR 文件缺少必要的启动信息&#xff0c;Java 虚拟机无法找到应用程序的入口点。本文将介绍该错误的原因以及如何通过修改 pom.xm…

JavaWeb——SpringBoot原理

10.1. 配置优先级 10.1.1. 配置文件 properties > yml(推荐) > yaml 10.1.2. Java系统属性、命令行参数 命令行参数 > Java系统属性 > 配置文件 10.2. Bean管理 10.2.1. 手动获取bean ApplicationContext&#xff0c;IOC容器对象 10.2.2. bean作用域 10.2.3.…

【AI绘画】Midjourney进阶:色调详解(上)

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AI绘画 | Midjourney 文章目录 &#x1f4af;前言&#x1f4af;Midjourney中的色彩控制为什么要控制色彩&#xff1f;为什么要在Midjourney中控制色彩&#xff1f; &#x1f4af;色调白色调淡色调明色调 &#x1f4af…

STM32F103外部中断配置

一、外部中断 在上一节我们介绍了STM32f103的嵌套向量中断控制器&#xff0c;其中包括中断的使能、失能、中断优先级分组以及中断优先级配置等内容。 1.1 外部中断/事件控制器 在STM32f103支持的60个可屏蔽中断中&#xff0c;有一些比较特殊的中断&#xff1a; 中断编号13 EXTI…

【Vue3+Pinia】Vue新一代状态管理器Pinia

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

【消息序列】详解(7):剖析回环模式--设备测试的核心利器

目录 一、概述 1.1. 本地回环模式 1.2. 远程环回模式 二、本地回环模式&#xff08;Local Loopback mode&#xff09; 2.1. 步骤 1&#xff1a;主机进入本地环回模式 2.2. 本地回环测试 2.2.1. 步骤 2a&#xff1a;主机发送HCI数据包并接收环回数据 2.2.2. 步骤 2b&…

大厂也在用的分布式链路追踪:TraceIdFilter + MDC + Skywalking

痛点 查线上日志时&#xff0c;同一个 Pod 内多线程日志交错&#xff0c;很难追踪每个请求对应的日志信息。 日志收集工具将多个 Pod 的日志收集到同一个数据库中后&#xff0c;情况就更加混乱不堪了。 解决 TraceId MDC 前端每次请求时&#xff0c;添加 X-App-Trace-Id 请…

leetcode - 2116. Check if a Parentheses String Can Be Valid

Description A parentheses string is a non-empty string consisting only of ‘(’ and ‘)’. It is valid if any of the following conditions is true: It is ().It can be written as AB (A concatenated with B), where A and B are valid parentheses strings.It ca…

如何启动 Docker 服务:全面指南

如何启动 Docker 服务:全面指南 一、Linux 系统(以 Ubuntu 为例)二、Windows 系统(以 Docker Desktop 为例)三、macOS 系统(以 Docker Desktop for Mac 为例)四、故障排查五、总结Docker,作为一种轻量级的虚拟化技术,已经成为开发者和运维人员不可或缺的工具。它允许用…

安装MySQL服务

安装版本MySQL8的安装包 安装界面 在这里选择MySQL中的Server only 只安装服务器端 如果选择custom需要如下图 进入配置导向&#xff0c;点击ready to configure&#xff0c;点击next即可 采用默认形式 执行成功后&#xff0c;会出现自动选择项 点击next然后再点击Finish 启动…

第六届国际科技创新学术交流大会暨新能源科学与电力工程国际(NESEE 2024)

重要信息 会议官网&#xff1a;nesee.iaecst.org 会议时间&#xff1a;2024年12月6-8日 会议地点&#xff1a; 中国-广州&#xff08;越秀国际会议中心) 大会简介 新能源科学与电力工程国际学术会议&#xff08;NESEE 2024&#xff09;作为第六届国际科技创新学术交流大会分…

Windows安装nacos

目录 一、下载 二、运行 三、运行失败 四、运行成功 一、下载 下载链接: Nacos Server 下载 | Nacos 官网 解压: 二、运行 进入nacos/bin, 运行startup.cmd 三、运行失败 如果出现黑窗口一闪而过, 说明失败了, 可能原因如下: ① 环境变量: 需要 JAVA_HOME 为 JDK8 ②…

Rust Newtype模式(通过结构体封装现有类型来创建新的类型)(单字段结构体,通过.0访问)模式匹配、解构、DerefMut

文章目录 深入理解Rust中的Newtype模式什么是Newtype模式&#xff1f;Newtype模式的基本形式Newtype的访问访问 Newtype 的值1. 通过 .0 访问字段2. 通过方法访问3. 通过模式匹配&#xff08;解构&#xff09;访问 总结 Newtype模式的应用场景1. 类型安全2. 增强可读性3. 定制化…

网络层协议IP

对于网络层我们直接通过IP协议来了解其内容 一.IP协议 首先我们先来了解几个概念&#xff1a; 主机&#xff1a;配有IP地址&#xff0c;但是不进行路由控制的设备 路由器&#xff1a;配有IP地址&#xff0c;同时进行路由控制的设备 节点&#xff1a;主机和路由器的统称 所以现在…

Qt界面篇:QMessageBox高级用法

1、演示效果 2、用法注意 2.1 设置图标 用于显示实际图标的pixmap取决于当前的GUI样式。也可以通过设置icon pixmap属性为图标设置自定义pixmap。 QMessageBox::Icon icon(

【强化学习的数学原理】第02课-贝尔曼公式-笔记

学习资料&#xff1a;bilibili 西湖大学赵世钰老师的【强化学习的数学原理】课程。链接&#xff1a;强化学习的数学原理 西湖大学 赵世钰 文章目录 一、为什么return重要&#xff1f;如何计算return&#xff1f;二、state value的定义三、Bellman公式的详细推导四、公式向量形式…

【数据结构实战篇】用C语言实现你的私有队列

&#x1f3dd;️专栏&#xff1a;【数据结构实战篇】 &#x1f305;主页&#xff1a;f狐o狸x 在前面的文章中我们用C语言实现了栈的数据结构&#xff0c;本期内容我们将实现队列的数据结构 一、队列的概念 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端…

实战项目负载均衡式在线 OJ

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;能自己实现负载均衡式在线 OJ。 > 毒鸡汤&#xff1a;有些事情&#xff0c;总是不明白&#xff0c;所以我不会坚持。早安! > 专栏选自&#xff1…

银河麒麟桌面系统——桌面鼠标变成x,窗口无关闭按钮的解决办法

银河麒麟桌面系统——桌面鼠标变成x&#xff0c;窗口无关闭按钮的解决办法 1、支持环境2、详细操作说明步骤1&#xff1a;用root账户登录电脑步骤2&#xff1a;导航到kylin-wm-chooser目录步骤3&#xff1a;编辑default.conf文件步骤4&#xff1a;重启电脑 3、结语 &#x1f49…

数据结构--AVL树(平衡二叉树)

✅博客主页:爆打维c-CSDN博客​​​​​​ &#x1f43e; &#x1f539;分享c、c知识及代码 &#x1f43e; &#x1f539;Gitee代码仓库 五彩斑斓黑1 (colorful-black-1) - Gitee.com 一、AVL树是什么&#xff1f;&#xff08;含义、性质&#xff09; 1.AVL树的概念 AVL树是最…