万字长文解析Golang高性能内存缓存库BigCache

news2024/11/23 16:33:58

项目地址

BigCache 是一个快速,支持并发访问,自淘汰的内存型缓存,可以在存储大量元素时依然保持高性能。BigCache将元素保存在堆上却避免了GC的开销。

背景介绍

BigCache的作者在项目里遇到了如下的需求:

  • 支持http协议
  • 支持 10 k 10k 10kRPS ,其中读写各占一半
  • cache缓存至少 10 10 10分钟
  • 平均 r t = 5 m s , p 99 < = 10 m s , p 999 < = 400 m s rt=5ms,p99<=10ms,p999<=400ms rt=5ms,p99<=10ms,p999<=400ms
    开发的缓存库需要保证:
  • 即使有百万的缓存对象速度也要很快
  • 支持高并发访问
  • 支持过期自动删除

简单入门

func Test_BigCache(t *testing.T) {
	cache, _ := bigcache.New(context.Background(), bigcache.DefaultConfig(10*time.Minute)) //定义cache
	cache.Set("my-unique-key", []byte("value")) //设置k,v键值对
	entry, _ := cache.Get("my-unique-key") //获取k,v键值对
	t.Log(string(entry))
}

配置文件

config字段说明

字段名类型含义
Shardsint缓存分片数,值必须是 2 的幂
LifeWindowtime.Duration条目可以被逐出的时间,近似可以理解为缓存时间
CleanWindowtime.Duration删除过期条目(清理)之间的间隔。如果设置为 <= 0,则不执行任何操作。设置为 < 1 秒会适得其反,因为 bigcache 的分辨率为 1 秒。
MaxEntriesInWindowint生命周期窗口中的最大条目数。仅用于计算缓存分片的初始大小。如果设置了适当的值,则不会发生额外的内存分配。
MaxEntrySizeint条目的最大大小(以字节为单位)。仅用于计算缓存分片的初始大小。
StatsEnabledboolStatsEnabled如果为true,则计算请求缓存资源的次数。
Verbosebool是否以详细模式打印有关新内存分配的信息
HasherHasher哈希程序用于在字符串键和无符号 64 位整数之间进行映射,默认情况下使用 fnv64 哈希
HardMaxCacheSizeint是BytesQueue 大小的限制 MB。它可以防止应用程序占用计算机上的所有可用内存,从而防止运行 OOM Killer。
OnRemovefunc(key string, entry []byte)OnRemove 是当最旧的条目由于过期时间或没有为新条目留出空间或调用 delete 而被删除时触发的回调。如果指定了 OnRemoveWithMetadata,则忽略。
OnRemoveWithMetadatafunc(key string, entry []byte, keyMetadata Metadata)OnRemoveWithMetadata 是当最旧的条目由于过期时间或没有为新条目留出空间或调用 delete 而被删除时触发的回调,携带有关该特定条目的详细信息的结构。
OnRemoveWithReasonfunc(key string, entry []byte, reason RemoveReason)OnRemoveWithReason 是当最旧的条目由于过期时间或没有为新条目留出空间或调用了 delete 而被删除时触发的回调,将传递一个表示原因的常量。如果指定了 OnRemove,则忽略。
onRemoveFilterint和OnRemoveWithReason一起使用,阻止 bigcache 解包它们,从而节省 CPU
LoggerLogger日志记录接口

说明:

  • LifeWindow 是一个时间。在此之后,条目可以称为死条目,但不能删除。
  • CleanWindow 是一个时间。在此之后,将删除所有无效条目,但不会删除仍具有生命的条目。
  • HardMaxCacheSize 默认值为 0,表示大小不受限制。当限制高于 0 并达到时,新条目将覆盖最旧的条目。由于 Shards 的额外内存,最大内存消耗将大于 HardMaxCacheSize。每个分片都会消耗额外的内存来映射键和统计信息 (map[uint64]uint32),此映射的大小等于缓存中的条目数 ~ 2×(64+32)×n 位 + 开销或映射本身。
  • OnRemove,OnRemoveWithMetadata ,OnRemoveWithReason 这三个跟删除有关的属性默认值为 nil,表示没有回调,并且会阻止解开最早的条目。

配置代码文件


// Config for BigCache
type Config struct {
	// Number of cache shards, value must be a power of two
	Shards int
	// Time after which entry can be evicted
	LifeWindow time.Duration
	// Interval between removing expired entries (clean up).
	// If set to <= 0 then no action is performed. Setting to < 1 second is counterproductive — bigcache has a one second resolution.
	CleanWindow time.Duration
	// Max number of entries in life window. Used only to calculate initial size for cache shards.
	// When proper value is set then additional memory allocation does not occur.
	MaxEntriesInWindow int
	// Max size of entry in bytes. Used only to calculate initial size for cache shards.
	MaxEntrySize int
	// StatsEnabled if true calculate the number of times a cached resource was requested.
	StatsEnabled bool
	// Verbose mode prints information about new memory allocation
	Verbose bool
	// Hasher used to map between string keys and unsigned 64bit integers, by default fnv64 hashing is used.
	Hasher Hasher
	// HardMaxCacheSize is a limit for BytesQueue size in MB.
	// It can protect application from consuming all available memory on machine, therefore from running OOM Killer.
	// Default value is 0 which means unlimited size. When the limit is higher than 0 and reached then
	// the oldest entries are overridden for the new ones. The max memory consumption will be bigger than
	// HardMaxCacheSize due to Shards' s additional memory. Every Shard consumes additional memory for map of keys
	// and statistics (map[uint64]uint32) the size of this map is equal to number of entries in
	// cache ~ 2×(64+32)×n bits + overhead or map itself.
	HardMaxCacheSize int
	// OnRemove is a callback fired when the oldest entry is removed because of its expiration time or no space left
	// for the new entry, or because delete was called.
	// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
	// ignored if OnRemoveWithMetadata is specified.
	OnRemove func(key string, entry []byte)
	// OnRemoveWithMetadata is a callback fired when the oldest entry is removed because of its expiration time or no space left
	// for the new entry, or because delete was called. A structure representing details about that specific entry.
	// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
	OnRemoveWithMetadata func(key string, entry []byte, keyMetadata Metadata)
	// OnRemoveWithReason is a callback fired when the oldest entry is removed because of its expiration time or no space left
	// for the new entry, or because delete was called. A constant representing the reason will be passed through.
	// Default value is nil which means no callback and it prevents from unwrapping the oldest entry.
	// Ignored if OnRemove is specified.
	OnRemoveWithReason func(key string, entry []byte, reason RemoveReason)

	onRemoveFilter int

	// Logger is a logging interface and used in combination with `Verbose`
	// Defaults to `DefaultLogger()`
	Logger Logger
}

默认配置

DefaultConfig 使用默认值初始化配置。当可以提前预测 BigCache 的负载时,最好使用自定义配置

字段名含义
Shards1024缓存分片数是1024
LifeWindoweviction自定义过期时间
CleanWindow1 * time.Second每隔1秒就清理失效数据
MaxEntriesInWindow1000 * 10 * 60生命周期窗口中的最大条目数为6e5
MaxEntrySize500条目的最大大小为500字节
StatsEnabledfalse不计算请求缓存资源的次数
Verbosetrue以详细模式打印有关新内存分配的信息
Hasherfnv64哈希程序,fnv64 哈希
HardMaxCacheSize0BytesQueue 大小无限制
LoggerDefaultLogger日志记录接口

优点:支持自定义过期时间,清理失效数据的间隔为最小间隔、效率高
缺点:BytesQueue 大小无限制,容易造成内存占用过高
默认配置代码:

func DefaultConfig(eviction time.Duration) Config {
	return Config{
		Shards:             1024,
		LifeWindow:         eviction,
		CleanWindow:        1 * time.Second,
		MaxEntriesInWindow: 1000 * 10 * 60,
		MaxEntrySize:       500,
		StatsEnabled:       false,
		Verbose:            true,
		Hasher:             newDefaultHasher(),
		HardMaxCacheSize:   0,
		Logger:             DefaultLogger(),
	}
}

数据结构

前提说明:BigCache 是快速、并发、逐出缓存,旨在保留大量条目而不影响性能。它将条目保留在堆上,但省略了它们的 GC。为了实现这一点,操作发生在字节数组上,因此在大多数用例中,都需要在缓存前面进行条目**(反序列化)**。

BigCache数据结构

字段名类型含义
shards[]*cacheShard缓存分片数据
lifeWindowuint64缓存时间,对应配置里的LifeWindow
clockclock时间计算函数
hashHasher哈希函数
configConfig配置文件
shardMaskuint64值为(config.Shards-1),寻找分片位置时使用的参数,可以理解为对config.Shards取余后的最大值
closechan struct{}关闭通道
type BigCache struct {
	shards     []*cacheShard
	lifeWindow uint64
	clock      clock
	hash       Hasher
	config     Config
	shardMask  uint64
	close      chan struct{}
}

cacheShard数据结构

字段名类型含义
hashmapmap[uint64]uint32索引列表,key为存储的key,value为该key在entries里的位置
entriesqueue.BytesQueue实际数据存储的地方
locksync.RWMutex互斥锁,用于并发读写
entryBuffer[]byte入口缓冲区
onRemoveonRemoveCallback删除回调函数
isVerbosebool是否详细模式打印有关新内存分配的信息
statsEnabledbool是否计算请求缓存资源的次数
loggerLogger日志记录函数
clockclock时间计算函数
lifeWindowuint64缓存时间,对应配置里的LifeWindow
hashmapStatsmap[uint64]uint32存储缓存请求次数
statsStats存储缓存统计信息
cleanEnabledbool是否可清理,由config.CleanWindow决定
type cacheShard struct {
	hashmap     map[uint64]uint32
	entries     queue.BytesQueue
	lock        sync.RWMutex
	entryBuffer []byte
	onRemove    onRemoveCallback

	isVerbose    bool
	statsEnabled bool
	logger       Logger
	clock        clock
	lifeWindow   uint64

	hashmapStats map[uint64]uint32
	stats        Stats
	cleanEnabled bool
}

BytesQueue数据结构

BytesQueue 是一种基于 bytes 数组的 fifo 非线程安全队列类型。对于每个推送操作,都会返回条目的索引。它可用于稍后读取条目。

字段名类型含义
fullbool队列是否已满
array[]byte实际数据存储的地方
capacityint容量
maxCapacityint最大容量
headint队首位置
tailint下次可以插入的元素位置
countint当前存在的元素数量
rightMarginint右边界
headerBuffer[]byte插入时的临时缓冲区
verbosebool是否详细模式打印有关新内存分配的信息
type BytesQueue struct {
	full         bool
	array        []byte
	capacity     int
	maxCapacity  int
	head         int
	tail         int
	count        int
	rightMargin  int
	headerBuffer []byte
	verbose      bool
}

优秀设计

处理并发访问

设计点1:将数据打散后存储

通用解法: 缓存支持并发访问是很基本的要求,比较常见的解决访问是对缓存整体加读写锁,在同一时间只允许一个协程修改缓存内容。这样的缺点是锁可能会阻塞后续的操作,而且高频的加锁、解锁操作会导致缓存性能降低。

设计点: B i g C a c h e BigCache BigCache使用一个 s h a r d shard shard数组来存储数据,将数据打散到不同的 s h a r d shard shard里,每个 s h a r d shard shard里都有一个小的 l o c k lock lock,从而减小了锁的粒度,提高访问性能。

设计点2:打散数据过程中借助位运算加快计算速度

接下来看一下将某个数据放到缓存的过程的源代码:

// Set saves entry under the key
func (c *BigCache) Set(key string, entry []byte) error {
	hashedKey := c.hash.Sum64(key)
	shard := c.getShard(hashedKey)
	return shard.set(key, hashedKey, entry)
}
func (c *BigCache) getShard(hashedKey uint64) (shard *cacheShard) {
	return c.shards[hashedKey&c.shardMask]
}

可以得到 s e t set set的过程如下:

  • 进行 h a s h hash hash操作,将 s t r i n g string string类型 k e y key key哈希为一个 u i n t 64 uint64 uint64类型的 h a s h e d K e y hashedKey hashedKey
  • 根据 h a s h e d K e y hashedKey hashedKey s h a r d i n g sharding sharding,最后落到的 s h a r d shard shard的下标为 h a s h e d K e y % n hashedKey\%n hashedKey%n,其中 n n n是分片数量。理想情况下,每次请求会均匀地落在各自的分片上,单个 s h a r d shard shard的压力就会很小。
  • 调用对应 s h a r d shard shard的set方法来设置缓存

设计点:
n n n 2 2 2的幂次方的时候,对于任意的 x x x,下面的公式都成立的。
x   m o d   N = ( x & ( N − 1 ) ) x\ mod\ N = (x \& (N − 1)) x mod N=(x&(N1))
所以可以借助位运算快速计算余数,因此倒推回去 缓存分片数必须要设置为 2 2 2的幂次方

设计点3 避免栈上的内存分配

默认的哈希算法为 f n v 64 fnv64 fnv64算法,该算法采用位运算的方式在栈上运算,避免了在堆上分配内存

package bigcache

// newDefaultHasher returns a new 64-bit FNV-1a Hasher which makes no memory allocations.
// Its Sum64 method will lay the value out in big-endian byte order.
// See https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function
func newDefaultHasher() Hasher {
	return fnv64a{}
}

type fnv64a struct{}

const (
	// offset64 FNVa offset basis. See https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash
	offset64 = 14695981039346656037
	// prime64 FNVa prime value. See https://en.wikipedia.org/wiki/Fowler–Noll–Vo_hash_function#FNV-1a_hash
	prime64 = 1099511628211
)

// Sum64 gets the string and returns its uint64 hash value.
func (f fnv64a) Sum64(key string) uint64 {
	var hash uint64 = offset64
	for i := 0; i < len(key); i++ {
		hash ^= uint64(key[i])
		hash *= prime64
	}

	return hash
}

减少GC开销

设计点1:利用go1.5+特性,减少GC扫描

g o l a n g golang golang里实现缓存最简单的方式是 m a p map map来存储元素,比如 m a p [ s t r i n g ] I t e m map[string]Item map[string]Item
使用 m a p map map的缺点为垃圾回收器 G C GC GC会在标记阶段访问 m a p map map里的每一个元素,当 m a p map map里存储了大量数据的时候会降低程序性能。

B i g C a c h e BigCache BigCache使用了 g o 1.5 go1.5 go1.5版本以后的特性:如果使用的map的key和value中都不包含指针,那么GC会忽略这个map
具体而言, B i g C a c h e BigCache BigCache使用 m a p [ u i n t 64 ] u i n t 32 map[uint64]uint32 map[uint64]uint32
来存储数据,不包含指针, G C GC GC就会自动忽略这个 m a p map map

m a p map map k e y key key存储的是缓存的 k e y key key经过 h a s h hash hash函数后得到的值
m a p map map v a l u e value value存储的是序列化后的数据在全局 [ ] b y t e []byte []byte中的下标。
因为 B i g C a c h e BigCache BigCache是将存入缓存的 v a l u e value value序列化为 b y t e byte byte数组,然后将该数组追加到全局的 b y t e byte byte数组里(说明:结合前面的打散思想可以得知一个 s h a r d shard shard对应一个全局的 b y t e byte byte数组
这样做的缺点是删除元素的开销会很大,因此 B i g C a c h e BigCache BigCache里也没有提供删除指定 k e y key key的接口,删除元素靠的是全局的过期时间或是缓存的容量上限,是先进先出的队列类型的过期。

性能测试

项目开发者给出了项目和主流缓存方案的 B e n c h m a r k s Benchmarks Benchmarks结果和 G C GC GC测试结果
测试文件链接

在这里插入图片描述

在这里插入图片描述

参考
妙到颠毫: bigcache优化技巧
[译] Go开源项目BigCache如何加速并发访问以及避免高额的GC开销

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2246122.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vulfocus在线靶场:骑士cms_cve_2020_35339:latest 速通手册

目录 一、启动环境&#xff0c;访问页面&#xff0c;ip:端口号/index.php?madmin,进入后台管理页面&#xff0c;账号密码都是adminadmin 二、进入之后&#xff0c;根据图片所示&#xff0c;地址后追加一下代码&#xff0c;保存修改 ​三、新开标签页访问&#xff1a;①ip:端…

【数据结构】归并排序 —— 递归及非递归解决归并排序

归并排序 一、归并排序1、归并排序的思想2、归并排序代码实现&#xff08;递归&#xff09;<1> 归并排序的递归区间<2> 归并排序的稳定性<3> 拷贝 3、归并排序代码实现&#xff08;非递归&#xff09;<1> 循环区间溢出问题 二、总结 一、归并排序 1、…

Java技术复习提升 10异常

10 异常 10.1异常介绍及分类 异常捕获 选中后alttabt->选中try-catch 异常就是程序执行中不正常的情况 注意语法和逻辑错误并不是异常 异常分类有两种 error和exception error是错误 虚拟机无法解决的严重问题 exception是其他因为编程错误或者外在因素导致的一般性的问…

transformer.js(三):底层架构及性能优化指南

Transformer.js 是一个轻量级、功能强大的 JavaScript 库&#xff0c;专注于在浏览器中运行 Transformer 模型&#xff0c;为前端开发者提供了高效实现自然语言处理&#xff08;NLP&#xff09;任务的能力。本文将详细解析 Transformer.js 的底层架构&#xff0c;并提供实用的性…

HCIA笔记3--TCP-UDP-交换机工作原理

1. tcp协议 可靠的连接 1.1 报文格式 1.2 三次握手 1.3 四次挥手 为什么TIME_WAIT需要2MSL的等待时间&#xff1f; &#xff08;a&#xff09; 为了实现可靠的关闭 &#xff08;b&#xff09;为了让过期的报文在网络上消失 对于(a), 假设host发给server的last ack丢了。 ser…

[Redis#2] 定义 | 使用场景 | 安装教程 | 快!

目录 1. 定义 In-memory data structures 在内存中存储数据 2. 优点&#xff01;快 Programmability 可编程性 Extensibility 扩展性 Persistence 持久化 Clustering 分布式集群 High availability 高可用性 ⭕快速访问的实现 3. 使用场景 1.Real-time data store …

Dubbo源码解析-服务调用(七)

一、服务调用流程 服务在订阅过程中&#xff0c;把notify 过来的urls 都转成了invoker&#xff0c;不知道大家是否还记得前面的rpc 过程&#xff0c;protocol也是在服务端和消费端各连接子一个invoker&#xff0c;如下图&#xff1a; 这张图主要展示rpc 主流程&#xff0c;消费…

Postman之newman

系列文章目录 1.Postman之安装及汉化基本使用介绍 2.Postman之变量操作 3.Postman之数据提取 4.Postman之pm.test断言操作 5.Postman之newman Postman之newman 1.基础环境node安装1.1.配置环境变量1.2.安装newman和html报告组件 2.newman运行 newman可以理解为&#xff0c;没有…

shell脚本(五)

声明&#xff01; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&#…

人口老龄化社区服务|基于springboot+vue的人口老龄化社区服务与管理平台(源码+数据库+文档)

目录 基于springbootvue的人口老龄化社区服务与管理平台 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&#xff1a; 博主介绍&#xff1a;✌️大厂码农|毕设布道师&#xff0c;阿里云…

初识WGCLOUD - 监测磁盘空间还能使用多久

WGCLOUD是一款免费开源的运维监控软件&#xff0c;性能优秀&#xff0c;部署简单&#xff0c;轻巧使用&#xff0c;支持大部分的Linux和Windows、安卓、MacOS等平台安装部署 最近发布的新版本 v3.5.4&#xff0c;WGCLOUD新增了可以自动计算每个磁盘剩余空间的可使用天数&#x…

Linux各种并发服务器优缺点

本文旨在介绍针对“无并发C/S模型”改进的方法总结以及各种改进方法的优缺点&#xff0c;具体函数的实现并不介绍。 1. 无并发C/S模型 创建服务器流程分析&#xff1a; socket()创建服务器的监听套接字bind()将服务器给服务器的监听套接字绑定IP地址和Port端口号listen()设置…

【PPTist】添加PPT模版

前言&#xff1a;这篇文章来探索一下如何应用其他的PPT模版&#xff0c;给一个下拉菜单&#xff0c;列出几个项目中内置的模版 PPT模版数据 &#xff08;一&#xff09;增加菜单项 首先在下面这个菜单中增加一个“切换模版”的菜单项&#xff0c;点击之后在弹出框中显示所有的…

【Python · PyTorch】卷积神经网络 CNN(LeNet-5网络)

【Python PyTorch】卷积神经网络 CNN&#xff08;LeNet-5网络&#xff09; 1. LeNet-5网络※ LeNet-5网络结构 2. 读取数据2.1 Torchvision读取数据2.2 MNIST & FashionMNIST 下载解包读取数据 2. Mnist※ 训练 LeNet5 预测分类 3. EMnist※ 训练 LeNet5 预测分类 4. Fash…

如何用通义灵码助力项目开发 | OceanBase obdiag 项目共建实践

本文来自 obdiag 项目共建的用户分享 一、背景 我的数据库探索之旅始于OceanBase。作为一位满怀好奇心的DBA&#xff0c;我内心始终怀揣着对数据库内部运作机制的无尽向往。开源如同一把钥匙&#xff0c;为我们这些求知欲旺盛的“好奇猫”解锁了通往新知的神秘大门。在众多分布…

如何给 Apache 新站点目录配置 SELinux ?

在 web 服务器管理领域&#xff0c;确保服务器环境的安全性至关重要。SELinux (Security-Enhanced Linux) 是保护 Linux 服务器最有效的工具之一&#xff0c;它是一种强制访问控制 (MAC mandatory access control) 安全机制。当使用最流行的 web 服务器 Apache 提供 web 内容时…

【电子物证培训】龙信助力三明市公安局电子物证取证竞赛

文章关键词&#xff1a;电子数据取证、手机取证、电子物证、介质取证 为了进一步提升福建省三明市公安机关刑侦部门在电子物证领域的专业技能&#xff0c;强化队伍实战能力&#xff0c;三明市公安机关刑侦部门举办电子物证专业技能竞赛&#xff0c;龙信受邀为竞赛提供全方位的…

【海思Hi3519DV500】双目网络相机套板硬件规划方案

Hi3519DV500双目网络相机套板是针对该芯片设计的一款 IP 编码板 PCBA&#xff0c;硬件接口支持双目sensor 接入&#xff0c;SDIO3.0 接口、USB2.0、USB3.0、UART 接口以及丰富的 IO 扩展应用&#xff0c;可根据各种使用场景设计相应扩展板&#xff0c;丰富外围接口&#xff0c;…

【青牛科技】电流模式PWM控制器系列--D4870

概述&#xff1a; D4870是用于开关电源的电流模式PWM(PWM)控制器系列产品。 该电路待机功耗低&#xff0c;启动电流低。在待机模式下&#xff0c;电路进入间歇工作模式&#xff0c;从而有效地降低电路的待机功耗。 电路的开关频率为 65KHz&#xff0c;抖动的振荡频率&…

对象:是什么,使用,遍历对象,内置对象

对象使用&#xff1a; 对象访问&#xff1a;&#xff08;对象每个属性之间用逗号隔开&#xff09; 补充&#xff1a;也可以通过 对象名[‘属性名’] 对象方法&#xff1a; 方法名:匿名函数 调用方法不需要控制台打印&#xff0c;只要调用就自动输出值 遍历对象&#xff1a; …