Spark RDD中常用聚合算子源码层面的对比分析

news2024/11/20 1:27:47

在 Spark RDD 中,groupByKeyreduceByKeyfoldByKeyaggregateByKey 是常用的聚合算子,适用于按键进行数据分组和聚合。它们的实现方式各不相同,涉及底层调用的函数也有区别。以下是对这些算子在源码层面的分析,以及每个算子适用的场景和代码示例。


1. groupByKey

  • 功能:将相同键的值分组,形成一个 (key, Iterable<values>) 的 RDD。

  • 源码分析
    groupByKey 底层使用了 combineByKeyWithClassTag 方法进行数据分组。

    def groupByKey(): RDD[(K, Iterable[V])] = {
        combineByKeyWithClassTag(
          (v: V) => mutable.ArrayBuffer(v),
          (c: mutable.ArrayBuffer[V], v: V) => { c += v; c },
          (c1: mutable.ArrayBuffer[V], c2: mutable.ArrayBuffer[V]) => { c1 ++= c2; c1 }
        ).asInstanceOf[RDD[(K, Iterable[V])]]
    }
    
    • 适用场景:适合需要按键分组、无聚合的场景,但由于需要把所有键的值都传输到驱动端,数据量大时可能导致内存问题。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.groupByKey().mapValues(list)
    print(result.collect())
    

    输出[('a', [1, 3]), ('b', [2])]


2. reduceByKey

  • 功能:基于给定的二元函数(如加法)对每个键的值进行聚合。

  • 源码分析
    reduceByKey 底层也是基于 combineByKeyWithClassTag 方法进行处理,但与 groupByKey 不同的是,它在每个分区内执行局部聚合,再进行全局聚合,减少了数据传输。

    def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
        combineByKeyWithClassTag[V]((v: V) => v, func, func)
    }
    
    • 适用场景:适用于需要对数据进行聚合计算的场景,能够有效减少 shuffle 数据量。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.reduceByKey(lambda x, y: x + y)
    print(result.collect())
    

    输出[('a', 4), ('b', 2)]


3. foldByKey

  • 功能:与 reduceByKey 类似,但提供了初始值,分区内和分区间合并时都使用这个初始值。

  • 源码分析
    foldByKey 的实现中调用了 aggregateByKey 方法,初始值会在每个分区中传递,确保聚合逻辑一致。

    def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] = {
        aggregateByKey(zeroValue)(func, func)
    }
    
    • 适用场景:当聚合操作需要一个初始值时使用,如从初始值开始累积计算。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.foldByKey(0, lambda x, y: x + y)
    print(result.collect())
    

    输出[('a', 4), ('b', 2)]


4. aggregateByKey

  • 功能:支持更复杂的聚合操作,提供了分区内和分区间不同的聚合函数。

  • 源码分析
    aggregateByKey 是最通用的聚合算子,调用了 combineByKeyWithClassTag 方法来控制分区内和分区间的计算方式。

    def aggregateByKey[U: ClassTag](zeroValue: U)(
        seqOp: (U, V) => U,
        combOp: (U, U) => U): RDD[(K, U)] = {
        // Implementation detail here
    }
    
    • 适用场景:适合复杂的聚合逻辑需求,例如在分区内和分区间使用不同的函数。
  • 示例

    rdd = sc.parallelize([("a", 1), ("b", 2), ("a", 3)])
    result = rdd.aggregateByKey(0,
                                lambda x, y: x + y,   # 分区内加和
                                lambda x, y: x + y)   # 分区间加和
    print(result.collect())
    

    输出[('a', 4), ('b', 2)]


区别总结

  • groupByKey:按键分组返回集合,适合分组场景,但内存消耗大。
  • reduceByKey:按键聚合,没有初始值,适用于聚合计算。
  • foldByKey:按键聚合,支持初始值,适合自定义累加计算。
  • aggregateByKey:最灵活的聚合算子,适合复杂逻辑。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2243732.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学习笔记019——Ubuntu部署tomcat

1、下载Tomcat压缩包。本人下载的版本是&#xff1a;apache-tomcat-8.5.77.tar.gz 2、将压缩包上传到Ubuntu某个目录。 本人存放的目录是 /opt 目录下, 命令解压&#xff1a; ## 解压tomcat压缩包 tar -zxvf apache-tomcat-8.5.77.tar.gz 3、vim打开bin目录的setclasspath…

【JavaSE】(6)抽象类和接口

目录 一、抽象类 1、什么是抽象类 2、抽象类的特点 3、抽象类的作用 4、抽象类示例代码 二、接口 1、什么是接口 2、接口的书写建议 3、接口的特点 4、实现多个接口 5、接口能“忘记类型” 6、接口间的继承 7、接口的应用 7.1、引用类型的比较--Comparable 和 Co…

Git学习教程(更新中)

持续更新完善中… 1 Git简介 1.1 Git是什么&#xff1f; Git是一个开源的分布式版本控制系统&#xff0c;由Linus Torvalds创建&#xff0c;用于有效、高速地处理从小到大的项目版本管理。它能够记录项目文件的变更历史&#xff0c;让多个开发者可以协作开发同一个项目&#…

TON商城与Telegram App:生态融合与去中心化未来的精彩碰撞

随着区块链技术的快速发展&#xff0c;去中心化应用&#xff08;DApp&#xff09;逐渐成为了数字生态的重要组成部分。而Telegram作为全球领先的即时通讯应用&#xff0c;不仅仅满足于传统的社交功能&#xff0c;更在区块链领域大胆探索&#xff0c;推出了基于其去中心化网络的…

〔 MySQL 〕数据类型

目录 1.数据类型分类 2 数值类型 2.1 tinyint类型 2.2 bit类型 2.3 小数类型 2.3.1 float 2.3.2 decimal 3 字符串类型 3.1 char 3.2 varchar 3.3 char和varchar比较 4 日期和时间类型 5 enum和set mysql表中建立属性列&#xff1a; 列名称&#xff0c;类型在后 n…

两行命令搭建深度学习环境(Docker/torch2.5.1+cu118/命令行美化+插件),含完整的 Docker 安装步骤

深度学习环境的配置过于繁琐&#xff0c;所以我制作了两个基础的镜像&#xff0c;希望可以帮助大家节省时间&#xff0c;你可以选择其中一种进行安装&#xff0c;版本说明&#xff1a; base 版本基于 pytorch/pytorch:2.5.1-cuda11.8-cudnn9-devel&#xff0c;默认 python 版本…

免费实时图片编辑工具:MagicQuill

参看&#xff1a; https://huggingface.co/spaces/AI4Editing/MagicQuill 人工智能交互式图像编辑&#xff1a;可以制定涂改增加删除

前端学习八股资料CSS(五)

更多详情&#xff1a;爱米的前端小笔记&#xff0c;更多前端内容&#xff0c;等你来看&#xff01;这些都是利用下班时间整理的&#xff0c;整理不易&#xff0c;大家多多&#x1f44d;&#x1f49b;➕&#x1f914;哦&#xff01;你们的支持才是我不断更新的动力&#xff01;找…

翼鸥教育:从OceanBase V3.1.4 到 V4.2.1,8套核心集群升级实践

引言&#xff1a;自2021年起&#xff0c;翼鸥教育便开始应用OceanBase社区版&#xff0c;两年间&#xff0c;先后部署了总计12套生产集群&#xff0c;其中核心集群占比超过四分之三&#xff0c;所承载的数据量已突破30TB。自2022年10月&#xff0c;OceanBase 社区发布了4.2.x 版…

如何在 Ubuntu 22.04 上安装 ownCloud

简介 ownCloud 是一个开源的个人云存储平台&#xff0c;它允许用户在本地服务器上存储和同步文件&#xff0c;提供了一个类似于 Dropbox 或 Google Drive 的服务&#xff0c;但是更加注重隐私和数据控制。以下是 ownCloud 的一些基础使用简介&#xff1a; 文件存储&#xff1…

使用Mybatis向Mysql中的插入Point类型的数据全方位解析

1. 结果 希望每一个能够看到结果的人都能自己装载进去&#xff01;加油&#xff01; 2.代码 2.1TestMapper import org.apache.ibatis.annotations.*; import java.util.Date; import java.util.List;/*** author Administrator*/ Mapper public interface TestMapper {/*…

web——sqliabs靶场——第六关——报错注入和布尔盲注

这一关还是使用报错注入和布尔盲注 一. 判断是否有sql注入 二. 判断注入的类型 是双引号的注入类型。 3.报错注入的检测 可以使用sql报错注入 4.查看库名 5. 查看表名 6.查看字段名 7. 查具体字段的内容 结束 布尔盲注 结束

鸿蒙实战:页面跳转传参

文章目录 1. 实战概述2. 实现步骤2.1 创建鸿蒙项目2.2 编写首页代码2.3 新建第二个页面 3. 测试效果4. 实战总结 1. 实战概述 本次实战&#xff0c;学习如何在HarmonyOS应用中实现页面间参数传递。首先创建项目&#xff0c;编写首页代码&#xff0c;实现按钮跳转至第二个页面并…

数据结构(基本概念及顺序表——c语言实现)

基本概念&#xff1a; 1、引入 程序数据结构算法 数据&#xff1a; 数值数据&#xff1a;能够直接参加运算的数据&#xff08;数值&#xff0c;字符&#xff09; 非数值数据&#xff1a;不能够直接参加运算的数据&#xff08;字符串、图片等&#xff09; 数据即是信息的载…

一.安装版本为19c的Oracle数据库管理系统(Oracle系列)

1.数据库版本信息&#xff1a; 版本信息&#xff1a; 或者直接由命令查出来&#xff1a; 2.操作系统的版本信息 3.安装包下载与上传 可以去oracle官网下载也可以从其他人的百度网盘链接中下载&#xff1a; 使用xftp工具或者其他的工具&#xff08;mobaxterm&#xff09;上传到l…

从 IDC 到云原生:稳定性提升 100%,成本下降 50%,热联集团的数字化转型与未来展望

作者&#xff1a;金峰&#xff08;项良&#xff09;、朱永林、赵世振&#xff08;寰奕&#xff09; 公司简介 杭州热联集团股份有限公司成立于 1997 年 10 月&#xff0c;是隶属杭州市实业投资集团的国有控股公司。公司专业从事国际、国内钢铁贸易黑色大宗商品及产业服务&…

说说软件工程中的“协程”

在软件工程中&#xff0c;协程&#xff08;coroutine&#xff09;是一种程序运行的方式&#xff0c;可以理解成“协作的线程”或“协作的函数”。以下是对协程的详细解释&#xff1a; 一、协程的基本概念 定义&#xff1a;协程是一组序列化的子过程&#xff0c;用户能像指挥家…

MinIO 的 S3 over RDMA 计划: 为高速人工智能数据基础设施设定对象存储新标准

随着 AI 和机器学习的需求不断加速&#xff0c;数据中心网络正在迅速发展以跟上步伐。对于许多企业来说&#xff0c;400GbE 甚至 800GbE 正在成为标准选择&#xff0c;因为数据密集型和时间敏感型 AI 工作负载需要高速、低延迟的数据传输。用于大型语言处理、实时分析和计算机视…

怀旧游戏打卡清单(TODO)

感觉忙碌了好久好久&#xff0c;真的好想休息一下。。 整理一下将来休息时候的打卡清单&#xff0c;不工作了去个海边狂打游戏&#xff0c;想想就惬意啊。当然&#xff0c;最好找个work from home&#xff0c;去海边找个酒店上班。挣钱休息两不误。。。 能不能实现另说&#xf…

《Python制作动态爱心粒子特效》

一、实现思路 粒子效果&#xff1a; – 使用Pygame模拟粒子运动&#xff0c;粒子会以爱心的轨迹分布并运动。爱心公式&#xff1a; 爱心的数学公式&#xff1a; x16sin 3 (t),y13cos(t)−5cos(2t)−2cos(3t)−cos(4t) 参数 t t 的范围决定爱心形状。 动态效果&#xff1a; 粒子…