两行命令搭建深度学习环境(Docker/torch2.5.1+cu118/命令行美化+插件),含完整的 Docker 安装步骤

news2024/11/20 1:15:32

深度学习环境的配置过于繁琐,所以我制作了两个基础的镜像,希望可以帮助大家节省时间,你可以选择其中一种进行安装,版本说明:

  • base 版本基于 pytorch/pytorch:2.5.1-cuda11.8-cudnn9-devel,默认 python 版本为 3.11.10,可以通过 conda install python==版本号 直接修改版本。
  • dl 版本在 base 基础上,额外安装了深度学习框架和常用工具,具体查看附录的安装清单。

如果你已经配置好了Docker,只需两行命令即可完成深度学习环境的搭建。对于没有 Docker 的同学,也不用担心,本文将提供详细的安装指引,帮助你一步步完成环境配置

P.S. 所有命令在 Ubuntu 18.04/20.04/22.04 下可以顺利执行(其余系统可通过文内链接跳转安装)。

文章目录

  • 镜像介绍
  • 快速配置环境(两行命令)
    • 1. 获取镜像(三选一)
      • 国内镜像版
      • 🪜科学上网版(直连)
      • 本地(网盘下载)
    • 2. 运行容器
      • 省流版
  • 安装 Docker Engine
    • 卸载旧版本
    • 使用 `apt` 仓库安装
  • GPU 驱动安装
  • 安装 NVIDIA Container Toolkit
  • 拉取并运行深度学习 Docker 镜像
  • 附录
    • 安装清单
      • base
      • dl

镜像介绍

所有版本都预装了 sudopipcondawgetcurlvim 等常用工具,且已经配置好 pipconda 的国内镜像源。同时,集成了 zsh 和一些实用的命令行插件(命令自动补全、语法高亮、以及目录跳转工具 z)。此外,已预装 jupyter notebookjupyter lab,方便进行深度学习开发,并优化了容器内的中文显示,避免出现乱码问题。其中还预配置了 Hugging Face 的国内镜像地址。

链接

  • quickstart,位于 Docker Hub,对应于下方的 pull 命令。
  • 百度云盘,直接下载对应的版本,跳过科学版的命令进行配置。

快速配置环境(两行命令)

如果遇到报错,查阅《Docker 基础命令介绍和常见报错解决》。

1. 获取镜像(三选一)

假设你已经安装并配置好了 Docker,那么只需两行命令即可完成深度学习的环境配置,以 dl 镜像为例,拉取:

国内镜像版

不可用的时候欢迎评论,我会对其进行替换。

sudo docker pull dockerpull.org/hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel

🪜科学上网版(直连)

sudo docker pull hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel

如果镜像有更新版本,可通过 docker pull 拉取最新镜像。

本地(网盘下载)

通过百度云盘下载文件(阿里云盘不支持分享大的压缩文件)。

同名文件内容相同,.tar.gz 为压缩版本,下载后通过以下命令解压:

gzip -d dl.tar.gz

假设 dl.tar 被下载到了 ~/Downloads 中,那么切换至对应目录:

cd ~/Downloads

然后加载镜像:

sudo docker load -i dl.tar

2. 运行容器

以容器名 dl 为例:

sudo docker run --gpus all -it --name dl hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel /bin/zsh

如果需要使用 Jupyter,可以使用以下命令:

sudo docker run --gpus all -it --name dl -p 8888:8888 hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel /bin/zsh

省流版

对于映射多个端口的同学,可以直接使用主机网络的配置(--network host

sudo docker run --gpus all -it --name dl --network host hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel /bin/zsh

如果需要设置代理,增加 -e 来设置环境变量,也可以参考拓展文章a:

假设代理的 HTTP/HTTPS 端口号为 7890, SOCKS5 为 7891:

  • -e http_proxy=http://127.0.0.1:7890
  • -e https_proxy=http://127.0.0.1:7890
  • -e all_proxy=socks5://127.0.0.1:7891

融入到之前的命令中:

sudo docker run --gpus all -it \
  --name dl \
  --network host \
  -e http_proxy=http://127.0.0.1:7890 \
  -e https_proxy=http://127.0.0.1:7890 \
  -e all_proxy=socks5://127.0.0.1:7891 \
  hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel \
  /bin/zsh

常用操作提前看

  • 启动容器docker start <容器名>
  • 运行容器docker exec -it <容器名> /bin/zsh
    • 容器内退出Ctrl + Dexit
  • 停止容器docker stop <容器名>
  • 删除容器docker rm <容器名>

如果还没有安装 Docker,继续阅读,可以根据实际情况通过目录快速跳转。

安装 Docker Engine

对于图形界面来说,可以跳过下面的命令直接安装 Desktop 版本(其中会提供 Docker Engine),这是最简单的方法。根据系统访问:

  • Linux
  • Mac
  • Windows

以下是命令行的安装命令,在 Ubuntu 上运行,其余系统参考官方文档。

卸载旧版本

在安装 Docker Engine 之前,需要卸载所有有冲突的包,运行以下命令:

for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done

apt-get 可能会报告没有安装这些包,忽略即可。

注意,卸载 Docker 的时候,存储在 /var/lib/docker/ 中的镜像、容器、卷和网络不会被自动删除。如果你想从头开始全新安装,请阅读 Uninstall Docker Engine 部分。

使用 apt 仓库安装

首次安装 Docker Engine 之前,需要设置 Docker 的 apt 仓库。

  1. 设置 Docker 的 apt 仓库。

    # 添加 Docker 的官方 GPG 密钥:
    sudo apt-get update
    sudo apt-get install ca-certificates curl
    sudo install -m 0755 -d /etc/apt/keyrings
    sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
    sudo chmod a+r /etc/apt/keyrings/docker.asc
    
    # 将仓库添加到 Apt 源:
    echo \
      "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
      $(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
      sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
    sudo apt-get update
    

    如果你使用的是 Ubuntu 的衍生发行版,例如 Linux Mint,可能需要使用 UBUNTU_CODENAME 而不是 VERSION_CODENAME

    如果 sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc 执行失败,尝试以下命令:

    sudo wget -qO- https://download.docker.com/linux/ubuntu/gpg | sudo tee /etc/apt/keyrings/docker.asc
    
  2. 安装 Docker 包。

    sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
    
  3. 通过运行 hello-world 镜像来验证安装是否成功:

    sudo docker run hello-world
    

    这个命令会下载测试镜像并运行,如果你看到以下输出,那么恭喜你安装成功:

    image-20241113173220588

GPU 驱动安装

如果需要使用 GPU 的话,先安装适用于你的系统的 NVIDIA GPU 驱动程序,访问任一链接进行:

  • NVIDIA CUDA Installation Guide for Linux
  • Official Drivers

这部分配置文章很多,偷个懒 😃 就不开新环境演示了,下面讲点可能不同的。

安装 NVIDIA Container Toolkit

为了在 Docker 容器中使用 GPU,需要安装 NVIDIA Container Toolkit。

注意,我们现在不再需要安装 nvidia-docker,官方在 2023.10.20 指出其已被 NVIDIA Container Toolkit 所取代,过去的配置命令可能已不再适用。

以下命令使用 Apt 完成,Yum 等其他命令访问参考链接:Installing the NVIDIA Container Toolkit。

  1. 设置仓库和 GPG 密钥

    设置 NVIDIA 的软件源仓库和 GPG 密钥,确保我们可以从官方源安装 NVIDIA Container Toolkit。

    curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
        sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
        sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list。
    
  2. 安装 NVIDIA Container Toolkit

    sudo apt-get update
    sudo apt-get install -y nvidia-container-toolkit
    
  3. 配置 Docker

    使用 nvidia-ctk 工具将 NVIDIA 容器运行时配置为 Docker 的默认运行时。

    sudo nvidia-ctk runtime configure --runtime=docker
    
  4. 重启 Docker

    sudo systemctl restart docker
    

拉取并运行深度学习 Docker 镜像

现在可以拉取深度学习(dl)镜像,命令和之前一致。

  1. 拉取镜像

    sudo docker pull hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel
    

    image-20241115163216096

  2. 运行镜像

    sudo docker run --gpus all -it hoperj/quickstart:dl-torch2.5.1-cuda11.8-cudnn9-devel
    
  3. 检查 GPU

    在容器内运行:

    nvidia-smi
    

    如果正确显示代表成功。不过对于实际使用来说,还需要了解基础命令和报错的解决方法。使用 Ctrl + D 或者命令行输入 exit 并回车退出容器,继续阅读《Docker 基础命令介绍和常见报错解决》。

附录

安装清单

base

基础环境

  • python 3.11.10
  • torch 2.5.1 + cuda 11.8 + cudnn 9

Apt 安装

  • wgetcurl:命令行下载工具
  • vimnano:文本编辑器
  • git:版本控制工具
  • git-lfs:Git LFS(大文件存储)
  • zipunzip:文件压缩和解压工具
  • htop:系统监控工具
  • tmuxscreen:会话管理工具
  • build-essential:编译工具(如 gccg++
  • iputils-pingiproute2net-tools:网络工具(提供 pingipifconfignetstat 等命令)
  • ssh:远程连接工具
  • rsync:文件同步工具
  • tree:显示文件和目录树
  • lsof:查看当前系统打开的文件
  • aria2:多线程下载工具

pip 安装

  • jupyter notebookjupyter lab:交互式开发环境
  • virtualenv:Python 虚拟环境管理工具,可以直接用 conda
  • tensorboard:深度学习训练可视化工具
  • ipywidgets:Jupyter 小部件库,用以正确显示进度条

插件

  • zsh-autosuggestions:命令自动补全
  • zsh-syntax-highlighting:语法高亮
  • z:快速跳转目录

dl

dl(Deep Learning)版本在 base 基础上,额外安装了深度学习可能用到的基础工具和库:

Apt 安装

  • ffmpeg:音视频处理工具
  • libgl1-mesa-glx:图形库依赖(解决一些深度学习框架图形相关问题)

pip 安装

  • 数据科学库
    • numpyscipy:数值计算和科学计算
    • pandas:数据分析
    • matplotlibseaborn:数据可视化
    • scikit-learn:机器学习工具
  • 深度学习框架
    • tensorflowtensorflow-addons:另一种流行的深度学习框架
    • tf-keras:Keras 接口的 TensorFlow 实现
  • NLP 相关库
    • transformersdatasets:Hugging Face 提供的 NLP 工具
    • nltkspacy:自然语言处理工具

一些库在安装时被自动安装,如 tensorflow 中的 keras

如果需要额外的库,可以通过以下命令手动安装:

pip install --timeout 120 <替换成库名>

这里 --timeout 120 设置了 120 秒的超时时间,确保在网络不佳的情况下仍然有足够的时间进行安装。如果不进行设置,在国内的环境下可能会遇到安装包因下载超时而失败的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2243726.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

免费实时图片编辑工具:MagicQuill

参看&#xff1a; https://huggingface.co/spaces/AI4Editing/MagicQuill 人工智能交互式图像编辑&#xff1a;可以制定涂改增加删除

前端学习八股资料CSS(五)

更多详情&#xff1a;爱米的前端小笔记&#xff0c;更多前端内容&#xff0c;等你来看&#xff01;这些都是利用下班时间整理的&#xff0c;整理不易&#xff0c;大家多多&#x1f44d;&#x1f49b;➕&#x1f914;哦&#xff01;你们的支持才是我不断更新的动力&#xff01;找…

翼鸥教育:从OceanBase V3.1.4 到 V4.2.1,8套核心集群升级实践

引言&#xff1a;自2021年起&#xff0c;翼鸥教育便开始应用OceanBase社区版&#xff0c;两年间&#xff0c;先后部署了总计12套生产集群&#xff0c;其中核心集群占比超过四分之三&#xff0c;所承载的数据量已突破30TB。自2022年10月&#xff0c;OceanBase 社区发布了4.2.x 版…

如何在 Ubuntu 22.04 上安装 ownCloud

简介 ownCloud 是一个开源的个人云存储平台&#xff0c;它允许用户在本地服务器上存储和同步文件&#xff0c;提供了一个类似于 Dropbox 或 Google Drive 的服务&#xff0c;但是更加注重隐私和数据控制。以下是 ownCloud 的一些基础使用简介&#xff1a; 文件存储&#xff1…

使用Mybatis向Mysql中的插入Point类型的数据全方位解析

1. 结果 希望每一个能够看到结果的人都能自己装载进去&#xff01;加油&#xff01; 2.代码 2.1TestMapper import org.apache.ibatis.annotations.*; import java.util.Date; import java.util.List;/*** author Administrator*/ Mapper public interface TestMapper {/*…

web——sqliabs靶场——第六关——报错注入和布尔盲注

这一关还是使用报错注入和布尔盲注 一. 判断是否有sql注入 二. 判断注入的类型 是双引号的注入类型。 3.报错注入的检测 可以使用sql报错注入 4.查看库名 5. 查看表名 6.查看字段名 7. 查具体字段的内容 结束 布尔盲注 结束

鸿蒙实战:页面跳转传参

文章目录 1. 实战概述2. 实现步骤2.1 创建鸿蒙项目2.2 编写首页代码2.3 新建第二个页面 3. 测试效果4. 实战总结 1. 实战概述 本次实战&#xff0c;学习如何在HarmonyOS应用中实现页面间参数传递。首先创建项目&#xff0c;编写首页代码&#xff0c;实现按钮跳转至第二个页面并…

数据结构(基本概念及顺序表——c语言实现)

基本概念&#xff1a; 1、引入 程序数据结构算法 数据&#xff1a; 数值数据&#xff1a;能够直接参加运算的数据&#xff08;数值&#xff0c;字符&#xff09; 非数值数据&#xff1a;不能够直接参加运算的数据&#xff08;字符串、图片等&#xff09; 数据即是信息的载…

一.安装版本为19c的Oracle数据库管理系统(Oracle系列)

1.数据库版本信息&#xff1a; 版本信息&#xff1a; 或者直接由命令查出来&#xff1a; 2.操作系统的版本信息 3.安装包下载与上传 可以去oracle官网下载也可以从其他人的百度网盘链接中下载&#xff1a; 使用xftp工具或者其他的工具&#xff08;mobaxterm&#xff09;上传到l…

从 IDC 到云原生:稳定性提升 100%,成本下降 50%,热联集团的数字化转型与未来展望

作者&#xff1a;金峰&#xff08;项良&#xff09;、朱永林、赵世振&#xff08;寰奕&#xff09; 公司简介 杭州热联集团股份有限公司成立于 1997 年 10 月&#xff0c;是隶属杭州市实业投资集团的国有控股公司。公司专业从事国际、国内钢铁贸易黑色大宗商品及产业服务&…

说说软件工程中的“协程”

在软件工程中&#xff0c;协程&#xff08;coroutine&#xff09;是一种程序运行的方式&#xff0c;可以理解成“协作的线程”或“协作的函数”。以下是对协程的详细解释&#xff1a; 一、协程的基本概念 定义&#xff1a;协程是一组序列化的子过程&#xff0c;用户能像指挥家…

MinIO 的 S3 over RDMA 计划: 为高速人工智能数据基础设施设定对象存储新标准

随着 AI 和机器学习的需求不断加速&#xff0c;数据中心网络正在迅速发展以跟上步伐。对于许多企业来说&#xff0c;400GbE 甚至 800GbE 正在成为标准选择&#xff0c;因为数据密集型和时间敏感型 AI 工作负载需要高速、低延迟的数据传输。用于大型语言处理、实时分析和计算机视…

怀旧游戏打卡清单(TODO)

感觉忙碌了好久好久&#xff0c;真的好想休息一下。。 整理一下将来休息时候的打卡清单&#xff0c;不工作了去个海边狂打游戏&#xff0c;想想就惬意啊。当然&#xff0c;最好找个work from home&#xff0c;去海边找个酒店上班。挣钱休息两不误。。。 能不能实现另说&#xf…

《Python制作动态爱心粒子特效》

一、实现思路 粒子效果&#xff1a; – 使用Pygame模拟粒子运动&#xff0c;粒子会以爱心的轨迹分布并运动。爱心公式&#xff1a; 爱心的数学公式&#xff1a; x16sin 3 (t),y13cos(t)−5cos(2t)−2cos(3t)−cos(4t) 参数 t t 的范围决定爱心形状。 动态效果&#xff1a; 粒子…

使⽤MATLAB进⾏⽬标检测

目录 数据准备定义模型并训练用测试集评估性能推理过程⼀⾏代码查看⽹络结构⼀⾏代码转onnx结语 ⼈⽣苦短&#xff0c;我⽤MATLAB。 Pytorch在深度学习领域占据了半壁江⼭&#xff0c;最主要的原因是⽣态完善&#xff0c;⽽且api直观易⽤。但谁能想到现在MATLAB⽤起来⽐Pytorch…

word-毕业论文的每一章节的页眉单独设置为该章的题目怎么设置

在Microsoft Word中&#xff0c;为毕业论文的每个章节设置不同的页眉&#xff0c;通常需要使用“分节符”来分隔各个章节&#xff0c;然后在每个章节中单独设置页眉。以下是详细步骤&#xff1a; 使用分节符 插入分节符&#xff1a; 将光标放在每个章节的末尾&#xff08;注意…

【简历】25届江苏二本JAVA简历:本末倒置,重点部分格式错误,不重要的写了一堆

简历总体说明 校招的第一法则就是必须要确定校招层次。 开发岗分为大中小厂&#xff0c;不同的层次对学校背景、时间点、项目和考点的要求都不太一样&#xff0c;所以必须要确定就业的层次。 这是一个25届二本同学的JAVA简历。 最近不知道怎么回事&#xff0c;看两份简历都…

字母异位词分组(java)

题目描述 给你一个字符串数组&#xff0c;请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单shilie 示例 1: 输入: strs ["eat", "tea", "tan", "ate", "n…

fpga spi回环

SPI设备间的数据传输之所以又被称为数据交换,是因为 SPI协议规定一个 SPI设备 不能在数据通信过程中仅仅只充当一个"发送者(Transmitter)“或者"接收者 (Receiver)”.在每个 Clock 周期内,SPI 设备都会发送并接收一个 bit 大小的数据(不管主 设备好还是从设备),相当于…

计算机网络-理论部分(二):应用层

网络应用体系结构 Client-Server客户-服务器体系结构&#xff1a;如Web&#xff0c;FTP&#xff0c;Telnet等Peer-Peer&#xff1a;点对点P2P结构&#xff0c;如BitTorrent 应用层协议定义了&#xff1a; 交换的报文类型&#xff0c;请求or响应报文类型的语法字段的含义如何…