代码训练营 day64|算法优化、带负权值图的最短路径

news2024/11/14 20:58:55

前言

这里记录一下陈菜菜的刷题记录,主要应对25秋招、春招
个人背景
211CS本+CUHK计算机相关硕,一年车企软件开发经验
代码能力:有待提高
常用语言:C++

系列文章目录

第64天 :第十一章:图论part09


`

文章目录

  • 前言
  • 系列文章目录
    • 第64天 :第十一章:图论part09
  • 一、今日任务
  • 二、详细布置
      • dijkstra(堆优化版)精讲
        • 模板
      • Bellman_ford 算法精讲
        • 模板
        • 提示:
        • 样例1:
    • 总结



一、今日任务

● dijkstra(堆优化版)精讲
● Bellman_ford 算法精讲

二、详细布置

dijkstra(堆优化版)精讲

朴素版的dijkstra的时间复杂度为 O(n^2),可以看出时间复杂度 只和 n (节点数量)有关系。如果n很大的话,我们可以换一个角度来优先性能。

用堆优化算法

模板
#include <iostream>
#include <vector>
#include <list>
#include <queue>
#include <climits>
using namespace std; 
// 小顶堆
class mycomparison {
public:
    bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
        return lhs.second > rhs.second;
    }
};
// 定义一个结构体来表示带权重的边
struct Edge {
    int to;  // 邻接顶点
    int val; // 边的权重

    Edge(int t, int w): to(t), val(w) {}  // 构造函数
};

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<list<Edge>> grid(n + 1);

    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val; 
        // p1 指向 p2,权值为 val
        grid[p1].push_back(Edge(p2, val));

    }

    int start = 1;  // 起点
    int end = n;    // 终点

    // 存储从源点到每个节点的最短距离
    std::vector<int> minDist(n + 1, INT_MAX);

    // 记录顶点是否被访问过
    std::vector<bool> visited(n + 1, false); 
    
    // 优先队列中存放 pair<节点,源点到该节点的权值>
    priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pq;


    // 初始化队列,源点到源点的距离为0,所以初始为0
    pq.push(pair<int, int>(start, 0)); 
    
    minDist[start] = 0;  // 起始点到自身的距离为0

    while (!pq.empty()) {
        // 1. 第一步,选源点到哪个节点近且该节点未被访问过 (通过优先级队列来实现)
        // <节点, 源点到该节点的距离>
        pair<int, int> cur = pq.top(); pq.pop();

        if (visited[cur.first]) continue;

        // 2. 第二步,该最近节点被标记访问过
        visited[cur.first] = true;

        // 3. 第三步,更新非访问节点到源点的距离(即更新minDist数组)
        for (Edge edge : grid[cur.first]) { // 遍历 cur指向的节点,cur指向的节点为 edge
            // cur指向的节点edge.to,这条边的权值为 edge.val
            if (!visited[edge.to] && minDist[cur.first] + edge.val < minDist[edge.to]) { // 更新minDist
                minDist[edge.to] = minDist[cur.first] + edge.val;
                pq.push(pair<int, int>(edge.to, minDist[edge.to]));
            }
        }

    }

    if (minDist[end] == INT_MAX) cout << -1 << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径
}

Bellman_ford 算法精讲

经典的带负权值的单源最短路问题,此时就轮到Bellman_ford登场了.
Bellman_ford算法 也是采用了动态规划的思想,即:将一个问题分解成多个决策阶段,通过状态之间的递归关系最后计算出全局最优解。

bellman_ford算法的核心思想是 对所有边进行松弛n-1次操作(n为节点数量),从而求得目标最短路。

如果 通过 A 到 B 这条边可以获得更短的到达B节点的路径,即如果 minDist[B] > minDist[A] + value,那么我们就更新 minDist[B] = minDist[A] + value ,这个过程就叫做 “松弛” 。

对所有边松弛一次,相当于计算 起点到达 与起点一条边相连的节点 的最短距离。
那对所有边松弛两次 可以得到与起点 两条边相连的节点的最短距离。
那对所有边松弛三次 可以得到与起点 三条边相连的节点的最短距离.

那么无论图是什么样的,边是什么样的顺序,我们对所有边松弛 n-1 次 就一定能得到 起点到达 终点的最短距离。

其实也同时计算出了,起点 到达 所有节点的最短距离,因为所有节点与起点连接的边数最多也就是 n-1 条边。

模板
#include <iostream>
#include <vector>
#include <list>
#include <climits>
using namespace std;

int main() {
    int n, m, p1, p2, val;
    cin >> n >> m;

    vector<vector<int>> grid;

    // 将所有边保存起来
    for(int i = 0; i < m; i++){
        cin >> p1 >> p2 >> val;
        // p1 指向 p2,权值为 val
        grid.push_back({p1, p2, val});

    }
    int start = 1;  // 起点
    int end = n;    // 终点

    vector<int> minDist(n + 1 , INT_MAX);
    minDist[start] = 0;
    for (int i = 1; i < n; i++) { // 对所有边 松弛 n-1 次
        for (vector<int> &side : grid) { // 每一次松弛,都是对所有边进行松弛
            int from = side[0]; // 边的出发点
            int to = side[1]; // 边的到达点
            int price = side[2]; // 边的权值
            // 松弛操作 
            // minDist[from] != INT_MAX 防止从未计算过的节点出发
            if (minDist[from] != INT_MAX && minDist[to] > minDist[from] + price) { 
                minDist[to] = minDist[from] + price;  
            }
        }
    }
    if (minDist[end] == INT_MAX) cout << "unconnected" << endl; // 不能到达终点
    else cout << minDist[end] << endl; // 到达终点最短路径

}

题目链接:94
文章讲解:图文讲解

题目描述

某国为促进城市间经济交流,决定对货物运输提供补贴。共有 n 个编号为 1 到 n 的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。

网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本 - 政府补贴。

权值为正表示扣除了政府补贴后运输货物仍需支付的费用;权值为负则表示政府的补贴超过了支出的运输成本,实际表现为运输过程中还能赚取一定的收益。

请找出从城市 1 到城市 n 的所有可能路径中,综合政府补贴后的最低运输成本。

如果最低运输成本是一个负数,它表示在遵循最优路径的情况下,运输过程中反而能够实现盈利。

城市 1 到城市 n 之间可能会出现没有路径的情况,同时保证道路网络中不存在任何负权回路。
输入描述

第一行包含两个正整数,第一个正整数 n 表示该国一共有 n 个城市,第二个整数 m 表示这些城市中共有 m 条道路。

接下来为 m 行,每行包括三个整数,s、t 和 v,表示 s 号城市运输货物到达 t 号城市,道路权值为 v(单向图)。

输出描述

如果能够从城市 1 到连通到城市 n, 请输出一个整数,表示运输成本。如果该整数是负数,则表示实现了盈利。如果从城市 1 没有路径可达城市 n,请输出 “unconnected”。

提示:

数据范围:
1 <= n <= 1000;
1 <= m <= 10000;
-100 <= v <= 100;

样例1:
输入:
6 7
5 6 -2
1 2 1
5 3 1
2 5 2
2 4 -3
4 6 4
1 3 5

输出:
1    

总结

今天主要学习了最短路径的一系列操作,包括带负权值的图的一系列操作,今天有点难,二刷加油。
加油,坚持打卡的第64天。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2239023.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PyTorch核心概念:从梯度、计算图到连续性的全面解析(三)

文章目录 Contiguous vs Non-Contiguous TensorTensor and ViewStrides非连续数据结构&#xff1a;Transpose( )在 PyTorch 中检查Contiguous and Non-Contiguous将不连续张量&#xff08;或视图&#xff09;转换为连续张量view() 和 reshape() 之间的区别总结 参考文献 Contig…

「IDE」集成开发环境专栏目录大纲

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「IDE」集成开发环境&#x1f4da;全部专栏「Win」Windows程序设计「IDE」集成开发环境「UG/NX」BlockUI集合「C/C」C/C程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」NX定…

Kafka经典面试题

1、kafka消息发送的流程&#xff1f; producer发送过程中启动两个线程 一个main线程 一个sender线程&#xff0c;在main线程中先创建一个双端队列&#xff08;RecordAccumlator、producerbatch&#xff09;&#xff0c;main将我们需要发送的东西经过拦截器&#xff0c;序列化&a…

手把手写深度学习(29):将DDP训练代码改成DeepSpeed

手把手写深度学习(0)&#xff1a;专栏文章导航 前言&#xff1a;deepspeed已经成为了大模型时代训练模型的常规武器&#xff0c;这篇博客以一个基于DDP的 Stable Diffusion模型训练为例&#xff0c;讲解如何从将DDP训练代码改成DeepSpeed。 目录 构建optimizer 构建scheduler…

信息收集系列(二):ASN分析及域名收集

内容预览 ≧∀≦ゞ 信息收集系列&#xff08;二&#xff09;&#xff1a;ASN分析及域名收集前言一、ASN 分析1. 获取 ASN 码2. 使用 ASNMap 获取 IP 范围3. 将 IP 范围转化为 IP 列表 二、关联域名收集1. 顶级域&#xff08;TLD&#xff09;收集测试方法 2. 根域名收集常用方法…

《数学分析》中不等式及补充

说明&#xff1a;此文章用于本人复习巩固&#xff0c;如果也能帮到大家那就更加有意义了。 注&#xff1a;1&#xff09;《数学分析》中的不等式及不等式的补充

HTML之图片和超链接的学习记录

图片 在HTML中&#xff0c;我们可以使用img标签来显示一张图片。对于img标签&#xff0c;我们只需要掌握它的三个属性&#xff1a;src、alt和title。 <img src"" alt"" title"" /> src用于指定图片所在的路径&#xff0c;这个路径可以是…

unity显示获取 年月日周几【日期】

unity显示获取 年月日周几【日期】 public void ShowDate(Text txt){//txt.text DateTime now DateTime.Now; // 获取当前时间int year now.Year; // 获取年份int month now.Month; // 获取月份&#xff08;1-12&#xff09;int day now.Day; // 获取天数&#xff08;1-31&…

【区块链】深入理解智能合约 ABI

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 深入理解智能合约 ABI&#xff08;应用程序二进制接口&#xff09;一、ABI 基础…

鸿蒙ZRouter动态路由框架—生命周期管理能力

文章目录 基本使用(单个页面生命周期&#xff09;页面的全局生命周期监听工作流程图源码 ZRouter从1.1.0版本开始支持生命周期函数管理能力&#xff0c;主要有以下特点&#xff1a; 不影响你原有的生命周期业务逻辑&#xff0c;对NavDestination页面保持着零侵入性&#xff0c;…

代码随想录算法训练营第十九天|理论基础、77. 组合、216.组合总和III、17.电话号码的字母组合

理论基础 文章链接&#xff1a;代码随想录 视频讲解&#xff1a;带你学透回溯算法&#xff08;理论篇&#xff09;| 回溯法精讲&#xff01;_哔哩哔哩_bilibili关于回溯算法&#xff0c;我公众号里已经讲完了&#xff0c;并且将回溯算法专题整理成一本PDF&#xff0c;该PDF共…

uniapp的基本使用(easycom规范和条件编译)和uview组件的安装和使用

文章目录 1、uniapp1.uview组件安装2.uview-plus组件安装 2、条件编译3、easycom规范1.组件路径符合规范2.自定义easycom配置的示例 总结 1、uniapp UniApp的UI组件库&#xff0c;如TMUI、uViewUI、FirstUI、TuniaoUI、ThorUI等&#xff0c;这些组件库适用于Vue3和TypeScript&…

深入探索GDB调试技巧及其底层实现原理

本文分为两个大模块&#xff0c;第一部分记录下本人常用到的GDB的调试方法和技巧&#xff0c;第二部分则尝试分析GDB调试的底层原理。 一、GDB调试 要让程序能被调试&#xff0c;首先得编译成debug版本&#xff0c;当然release版本的也能通过导入符号表来实现调试&#xff0c…

Kubernetes的基本概念

Kubernetes是谷歌以Borg为前身,基于谷歌15年生产环境经验的基础上开源的一个项目,Kubernetes致力于提供跨主机集群的自动部署、扩展、高可用以及运行应用程序容器的平台。 一、资源对象概述 Kubernetes中的基本概念和术语大多是围绕资源对象(Resource Object)来说的,而资…

JavaWeb后端开发案例——苍穹外卖day01

day1遇到问题&#xff1a; 1.前端界面打不开&#xff0c;把nginx.conf文件中localhost:80改成81即可 2.前后端联调时&#xff0c;前端登录没反应&#xff0c;application.yml中默认用的8080端口被占用&#xff0c;就改用了8081端口&#xff0c;修改的时候需要改两个地方&…

(一)<江科大STM32>——软件环境搭建+新建工程步骤

一、软件环境搭建 &#xff08;1&#xff09;安装 Keil5 MDK 文件路径&#xff1a;江科大stm32入门教程资料/Keil5 MDK/MDK524a.EXE&#xff0c;安装即可&#xff0c;路径不能有中文。 &#xff08;2&#xff09;安装器件支持包 文件路径&#xff1a;江科大stm32入门教程资料…

软件开发的各类模型

目录 软件的生命周期 常见开发模型 瀑布模型 螺旋模型 增量模型、迭代模型 敏捷模型 Scrum模型 常见测试模型 V模型 W模型&#xff08;双V模型&#xff09; 软件的生命周期 软件的生命周期包括需求分析&#xff0c;计划&#xff0c;设计&#xff0c;编码&#xff0c;…

ElasticSearch学习笔记一:简单使用

一、前言 该系列的文章用于记录本人从0学习ES的过程&#xff0c;首先会对基本的使用进行讲解。本文默认已经安装了ES单机版本&#xff08;当然后续也会有对应的笔记&#xff09;&#xff0c;且对ES已经有了相对的了解&#xff0c;闲话少叙&#xff0c;书开正文。 二、ES简介 …

C++笔记---异常

1. 异常的概念 1.1 异常和错误 异常通常是指在程序运行中动态出现的非正常情况&#xff0c;这些情况往往是可以预见并可以在不停止程序的情况下动态地进行处理的。 错误通常是指那些会导致程序终止的&#xff0c;无法动态处理的非正常情况。例如&#xff0c;越界访问、栈溢出…

python opencv3

三、图像预处理2 1、图像滤波 为图像滤波通过滤波器得到另一个图像。也就是加深图像之间的间隙&#xff0c;增强视觉效果&#xff1b;也可以模糊化间隙&#xff0c;造成图像的噪点被抹平。 2、卷积核 在深度学习中&#xff0c;卷积核越大&#xff0c;看到的信息越多&#xff0…