大模型技术讲解:大模型参数微调(大模型微调)

news2024/11/7 11:52:45

转自  秋色稻田公众号

这篇文章讲讲大模型的参数微调,参数微调(Fine-tuning)是一种机器学习技术,用于调整大型预训练模型的参数,以大模型适应特定应用场景。这种方法通常用于自然语言处理(NLP)领域,特别是使用在Transformer架构的模型,如BERT、GPT等。

一、参数微调的优势

1、节省资源:不需要从零开始训练一个大型模型,可以节省大量的计算资源和时间。

2、良好的性能:预训练模型已经具备了丰富的语言知识,微调可以让模型在特定任务上达到很好的性能。

3、适应性强:可以快速适应各种不同的下游任务。

二、参数微调的挑战

1、数据需求:尽管微调所需的数据比预训练少,但模型是需要一定量的高质量数据才能有良好的表现。

2、过拟合风险:对于一些小型数据集,微调过程中存在过拟合的风险。

3、任务适配:某些任务需要特定的修改或策略才能更好地适配预训练模型。

三、参数微调的基本步骤

1、预训练模型:首先,使用大规模的数据集对模型进行预训练。这个阶段的目标是让模型学习到通用的语言特征和知识,形成通用大模型的基座。

2、任务特定数据集:准备一个与目标任务相关的数据集。这个数据集通常比预训练使用的数据集小得多。

3、添加任务特定层:在预训练模型的基础上,通常会添加一些新的层(例如,分类层),这些层将针对特定任务进行训练。

4、微调:使用任务特定数据集对模型进行微调。在这个阶段,模型的全部或部分参数会根据新的数据集进行调整。微调的目标是让模型更好地适应新的任务。

5、评估和迭代:在微调后,使用验证集评估模型的性能。根据需要,可以继续迭代和调整模型。

想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。

1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。

CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987

四、举个参数微调的例子

一个著名的参数微调案例是使用BERT模型进行情感分析。

1、BERT模型简介

BERT是一种基于Transformer的预训练语言表示模型,它能够通过双向训练来学习语言特征。BERT模型有多种尺寸,常用的有BERT-Base(bert-base-uncased)和BERT-Large(bert-large-uncased),分别拥有110M和340M的参数。

2、情感分析任务

情感分析是NLP中的一项常见任务,它的目标是对给定的文本判断其情感倾向,例如将其分类为正面、负面或中性。

3、参数微调BERT进行情感分析

步骤 1: 准备数据集

收集数据:获取一个标注好的情感分析数据集,例如IMDb电影评论数据集是一个常用于情感分析的二元分类数据集,包含正面和负面评论。

数据清洗:去除数据中的噪声,如HTML标签、非文本字符等。

数据分割:将数据集分为训练集、验证集和测试集。

步骤 2: 预训练模型

使用已经预训练好的BERT模型。这个模型已经在大量的文本数据上进行了训练,学习到了通用的语言表示。具体包括:

选择模型:从Hugging Face模型库中选择一个预训练的BERT模型,例如bert-base-uncased。

加载模型:使用适当的库(如Transformers或TensorFlow Hub)加载预训练的BERT模型。

步骤 3: 数据预处理

将文本数据转换为BERT模型能够理解的格式。这通常包括将文本分词,添加特殊的起始和结束标记([CLS]和[SEP]),以及转换为模型所需的词嵌入ID。具体包括:

分词:使用BERT的分词器将文本分词。

编码:将分词后的文本转换为词嵌入ID,同时添加特殊的起始和结束标记。

创建注意力掩码:生成注意力掩码,用于在模型中屏蔽填充标记([PAD])。

创建标签:将情感标签转换为模型可以理解的格式,例如,正面为1,负面为0。

步骤 4: 模型修改

添加分类层:在BERT模型的顶部添加一个或多个全连接层,用于分类任务。

指定输出层:通常,使用[CLS]标记的输出作为分类层的输入。

添加分类层:在BERT模型的基础上添加一个或多个全连接层,用于分类。通常,[CLS]标记的输出被用作分类任务的输入。

步骤 5: 微调模型

使用情感分析数据集对BERT模型进行微调。在微调过程中,模型的参数会根据新的任务进行调整。具有包括:

定义损失函数:对于分类任务,通常使用交叉熵损失函数。

选择优化器:选择一个优化器,如AdamW,并设置学习率。

训练模型:使用训练集对模型进行训练,通常需要进行多个epochs。

步骤 6: 评估和迭代

在微调后,使用验证集评估模型的性能。根据需要,可以调整模型的参数或训练策略,以提高性能。具体包括:

评估模型:在每个epoch后,使用验证集评估模型的性能。

调整超参数:根据验证集的性能调整学习率、批大小等超参数。

防止过拟合:使用dropout、权重衰减等技术减少过拟合的风险。

步骤 7: 模型部署

保存模型:一旦模型在验证集上达到满意的性能,保存模型权重。

加载模型:在实际应用中,加载保存的模型并进行预测。

步骤 8: 应用模型

数据预处理:对新输入的文本进行与训练时相同的预处理步骤。

预测:使用微调后的模型进行情感预测。

一旦模型在验证集上达到满意的性能,就可以将其应用于新的数据,进行情感分析了。

通过这个过程,BERT模型可以被微调为一个有效的情感分析工具。这种微调方法不仅适用于情感分析,还适用于许多其他NLP任务,如文本分类、命名实体识别、问答系统等。参数微调使得BERT模型能够在各种特定的NLP任务中实现最先进的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2234985.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

element-plus快速实现table组件表头吸顶和滚动条吸底

使用devecoui 组件快速实现 element-plus table 组件,表头吸顶和滚动条吸底,且完美实现固定表头的吸顶效果,同时devecoui组件还可以实现,查询列表的快速开发,里面集成了更多的功能。详细功能请前往:添加链接…

C++STL容器详解——list

目录 一.list 1.list的介绍 2.为什么会有list? 二.list的常见接口 1.list的构造函数 2.list的遍历 3.迭代器类型 4.list的头插头删和尾插尾删 5.list任意位置的插入和删除 6.list的sort()及reverse() 7.迭代器失效 三.整体代码 一.list 1.list的介绍 list的文档说…

服务器数据恢复—EVA存储故障导致上层应用不可用的数据恢复案例

服务器存储数据恢复环境: 一台EVA某型号控制器EVA扩展柜FC磁盘。 服务器存储故障&检测: 磁盘故障导致该EVA存储中LUN不可用,导致上层应用无法正常使用。 服务器存储数据恢复过程: 1、将所有磁盘做好标记后从扩展柜中取出。硬…

hf_transformers

强者自定义,弱者用默认,傻逼不看说明书 1. 2.在 model.generate()里填参数,默认为20个新token generated_ids model.generate(**model_inputs, max_new_tokens50) 3. 默认情况下,除非在GenerationConfig文件中指定&#xff0…

Sigrity Power SI 3D-EM Inductance Extraction模式如何进行电感的提取操作指导(一)

Sigrity Power SI 3D-EM Inductance Extraction模式如何进行电感的提取操作指导(一) Sigrity Power SI使用3D-EM Inductance Extraction模式可以进行电感的提取,以下图为例 2D 视图 <

学习记录:js算法(八十七):单词搜索

文章目录 单词搜索思路一思路二 单词搜索 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 单词必须按照字母顺序&#xff0c;通过相邻的单元格内的字母构成&#xff0c;其…

应急救援无人车:用科技守护安全!

一、核心功能 快速进入危险区域&#xff1a; 救援无人车能够迅速进入地震、火灾、洪水等自然灾害或重大事故的现场&#xff0c;这些区域往往对人类救援人员构成极大威胁。 通过自主导航和环境感知技术&#xff0c;无人车能够避开危险区域&#xff0c;确保自身安全的同时&…

辩论赛——动态IP与静态IP的巅峰对决

尊敬的各位观众&#xff1a; 大家好&#xff01;欢迎来到今天的演说舞台&#xff0c;我是主持人小蝌蚪。今天&#xff0c;我们将见证一场精彩绝伦的辩论&#xff0c;辩论的双方是动态IP和静态IP。他们将围绕各自的优缺点展开激烈的辩论&#xff0c;为我们揭示代理IP世界中的奥…

红米k70怎么设置「短信通知」在锁屏时隐藏内容,不锁屏时不隐藏内容

红米 K70 设置短信通知在锁屏时隐藏内容、不锁屏时不隐藏内容&#xff0c;可以按照以下步骤进行操作&#xff1a; 打开手机设置&#xff1a;在主屏幕上找到并点击 “设置” 图标&#xff0c;进入手机设置页面。进入通知与控制中心&#xff1a;在设置页面中&#xff0c;找到并点…

【计算机网络】零碎知识点(易忘 / 易错)总结回顾

一、计算机网络的发展背景 1、网络的定义 网络是指将多个计算机或设备通过通信线路、传输协议和网络设备连接起来&#xff0c;形成一个相互通信和共享资源的系统。 2、局域网 LAN 相对于广域网 WAN 而言&#xff0c;局域网 LAN 主要是指在相对较小的范围内的计算机互联网络 …

Python 在PDF中绘制形状(线条、矩形、椭圆形等)

在PDF中绘制图形可以增强文档的视觉效果。通过添加不同类型的形状&#xff0c;如实线、虚线、矩形、圆形等&#xff0c;可以使文档更加生动有趣&#xff0c;提高读者的阅读兴趣。这对于制作报告、演示文稿或是教材特别有用。本文将通过以下几个示例介绍如何使用Python 在PDF中绘…

三菱MR-J4伺服绝对位置检测系统

发生[AL.25 绝对位置丢失]或[AL.E3 绝对位置计数器警告]时&#xff0c;必须再次进行原点设定。否则可能会因此发生预料之外的动作。 概要 常规运行时&#xff0c;编码器由检测1转内位置的编码器和检测转数的旋转累计计数器构成。 绝对位置检测系统与伺服系统控制器电源…

程序员行业会因此受到什么冲击?

床铺再次当选&#xff0c;会对两家关系产生深远影响。在此篇博客中&#xff0c;我们将探讨床铺的政策对我们外贸、就业、留学以及特别是互联网产业和我们程序员职业的潜在影响。 关系趋紧&#xff1a;摩擦可能会更多 床铺在其任期期间对我们施加了诸多贸易税&#xff0c;采取…

Edge浏览器打开PDF无法显示电子签章

Edge浏览器打开PDF无法显示电子签章 直接说处理方式 直接说处理方式 浏览器地址栏&#xff0c;输入 edge://flags/搜索&#xff1a;pdf禁用&#xff1a;New PDF Viewer效果如下

02- 模块化编程-006 ADC0808数码显示对比

1、ADC0808 芯片介绍 ADC0808是一款集成的CMOS设备&#xff0c;包含8位模拟至数字转换器、8通道多路复用器和与微处理器兼容的控制逻辑。8位A/D转换器采用逐次逼近作为转换技术。转换器特点包括高阻抗斩波稳定比较器、256R电压分压器、模拟开关树和逐次逼近寄存器。8通道多路复…

计算机体系结构之多级缓存、缓存miss及缓存hit(二)

前面章节《计算机体系结构之缓存机制原理及其应用&#xff08;一&#xff09;》讲了关于缓存机制的原理及其应用&#xff0c;其中提出了多级缓存、缓存miss以及缓存hit的疑问。故&#xff0c;本章将进行展开讲解&#xff0c; 多级缓存、缓存miss以及缓存hit存在的意义是为了保持…

scala set训练

Set实训内容&#xff1a; 1.创建一个可变Set&#xff0c;用于存储图书馆中的书籍信息&#xff08;假设书籍信息用字符串表示&#xff09;&#xff0c;初始化为包含几本你喜欢的书籍 2.添加两本新的书籍到图书馆集合中&#xff0c;使用操作符 3.删除一本图书馆集合中的书籍&…

linux驱动-i2c子系统框架学习(1)

可以将整个 I2C 子系统用下面的框图来描述&#xff1a; 可以将上面这一 I2C 子系统划分为三个层次&#xff0c;分别为用户空间、内核空间和硬件层&#xff0c;内核空间就包括 I2C 设备驱动层、I2C 核心层和 I2C 适配器驱动层&#xff0c; 本篇主要内容就是介绍 I2C 子系统框架中…

鸿蒙系统崛起:开发者如何把握机遇、应对挑战并打造卓越应用体验?

在当今科技发展的浪潮中&#xff0c;鸿蒙系统&#xff08;HarmonyOS&#xff09;如一颗璀璨之星&#xff0c;正以迅猛之势崛起。随着其持续发展&#xff0c;鸿蒙系统在全球操作系统市场中已然崭露头角&#xff0c;呈现出与安卓&#xff08;Android&#xff09;和iOS分庭抗礼的态…

Scala入门基础(17)Set集

Set的定义Set的代码结构不可变与可变Set的区别Set常见操作 一.Set的定义 Set:集合 Set的特点&#xff1a;唯一&#xff08;元素不相同&#xff09; 二.Set的代码结构 val 变量名 Set[类型]&#xff08;元素1&#xff0c;元素2...&#xff09; &#xff08;演示&#xff09…