怎么看AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI 的不同形态?

news2025/1/4 6:19:47

前言

在 AI 人工智能时代,智能体将会是未来最主流的大模型应用方式?人人都有机会通过智能体,解锁成为【超级个体】。

在人工智能的快速发展中,LLM、Agent、知识库、向量数据库、RAG(检索增强生成)、知识图谱以及AGI(人工通用智能)等概念和技术不断涌现,其共同推动着人工智能技术的进步和应用场景的拓展!

从智能体定义到实际应用,在多次体验各个智能体系之旅的前提下,简单谈谈一点 IDea!本文将分别介绍这些概念和技术,并探讨它们在实现AGI的不同形态中所扮演的角色。

接下来,我们先来看看这些在 AI 生态里面的 概念&定义->

大模型(LLM)

大语言模型(LLM)是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等,是通向人工智能的一条重要途径。

去年,大语言模型及其在人工智能领域的应用已成为全球科技研究的热点,其在规模上的增长尤为引人注目,参数量已从最初的十几亿跃升到如今的一万亿。参数量的提升使得模型能够更加精细地捕捉人类语言微妙之处,更加深入地理解人类语言的复杂性。

在过去的一年里,大语言模型在吸纳新知识、分解复杂任务以及图文对齐等多方面都有显著提升。随着技术的不断成熟,它将不断拓展其应用范围,为人类提供更加智能化和个性化的服务,进一步改善人们的生活和生产方式。
在这里插入图片描述

智能体(Agent)

任何独立的能够思考并可以同环境交互的实体都可以抽象为智能体。Agent 是一个英文单词,指能自主活动的软件或者硬件实体。在人工智能领域,国内译为中文“智能体”。曾被译为“代理”、“代理者”、“智能主体”等。

智能体本身包括感知观测单元 (Sensor)、记忆检索单元(Memory)、推理规划单元(Planner) 和行动执行单元(Actuator)。

以 AI 为核心,构建一个立体感知、全域协同、精准判断、持续进化、开放的智能系统。

在这里插入图片描述

知识库

知识库是存储和管理知识的系统,在数据存储和检索方面起着重要意义。

作为以知识为基础的系统,为人工智能应用提供了丰富的数据支持。它整合和存储组织内部或外部的知识和信息,帮助企业或个人更有效地获取和利用知识。

在这里插入图片描述

知识库不仅可以提供各种类型的知识,还支持多种检索方式,方便用户快速找到所需知识。在人工智能应用中,知识库扮演着至关重要的角色,为 AI 系统提供必要的知识支撑。

知识库的概念来自两个不同的领域,一个是人工智能及其分支-知识工程领域,另一个是传统的数据库领域。由人工智能(AI)和数据库(DB)两项计算机技术的有机结合,促成了知识库系统的产生和发展。

在这里插入图片描述

知识库->信息和知识有序化,加快知识和信息流动,知识共享与交流,可以管理海量的非结构化文档数据,应用范围广泛。

在这里插入图片描述

向量数据库

向量数据库是专门用来存储和查询向量的数据库,其存储的向量来自于对文本、语音、图像、视频等的向量化。

与传统数据库相比,向量数据库可以处理更多非结构化数据(比如图像和音频)。

在机器学习和深度学习中,数据通常以向量形式表示。向量数据库以其高效存储、索引和搜索高维数据点的独特能力,在多个领域凸显了其重要性。它能够处理以多维空间中的向量形式表示的数据条目,包括数值特征、文本或图像的嵌入等复杂数据。

总的来说,在数据存储和检索方面,知识库和向量数据库发挥着重要作用。知识库是存储和管理知识的系统,而向量数据库则采用向量空间模型,将数据表示为向量形式,使得存储和检索高维数据变得更为高效。

向量数据库的应用使得 AI 系统在处理大规模、高维度的数据时更加高效和准确。这种数据库适用于图像、文本、音频等多种数据类型,为 AI 大模型和 Agent 智能体提供了强大的数据支持。

知识图谱

知识图谱则是一种以实体和关系为基础的图结构数据库,用于表示和管理知识。用于存储、管理和显示人类语言知识的结构化数据模型。

它通过对人类语言知识进行语义抽取并建立起其之间的关系,形成一种树状结构的知识库。实体是具有特定属性和关系的对象,如人、地点、组织等,而关系则是实体之间的联系。把复杂的知识领域通过数据挖掘、信息处理、知识计量和图形绘制而显示出来,揭示知识领域的动态发展规律,为学科研究提供切实的、有价值的参考。

知识图谱技术的应用非常广泛,在医疗方面,比如临床诊疗->医疗数据->知识图谱(实体识别->关系抽取->数据集训练 图谱形式:主要确定什么作为节点,节点之间的边用什么来关联或者表示)。

在这里插入图片描述

与此同时,在智能推荐、自然语言处理、机器学习等领域也具有广泛的应用。尤其在搜索引擎领域,它能够提高搜索的准确性,为用户提供更加精准的搜索结果。

在这里插入图片描述

我们这里举个示例,比如:篮球领袖姚明,假如我们没有摄入这些知识的时候,我们就不知道姚明原来是篮球界的榜样!

这不禁让人联想到【六度分隔理论】

六度分隔(Six Degrees of Separation)简单地说:“你和任何一个陌生人之间所间隔的人不会超六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。” 就好比一个连结人与社区的人际连系网:

在这里插入图片描述

检索增强生成(RAG)

RAG(检索增强生成)是一种结合检索器和生成器两大功能组件的技术,用于处理复杂的信息查询和生成任务。在大模型时代,RAG 通过加入外部数据(如本地知识库、企业信息库等)来增强 AI 模型的检索和生成能力,提高信息查询和生成质量。

RAG(Retrieval-Augmented Generation)将向量数据库和大模型问答能力进行有效结合。知识源存储在向量数据库中,当提出问题时,通过向数据库检索找到相关部分,然后与大模型一起生成最终的回答。这种技术的出现大大提高了 AI 系统在回答复杂问题时的准确性和效率。

人工通用智能(AGI)

AGI(人工通用智能)是人工智能发展的最终目标,它要求智能系统能够像人类一样理解和处理各种复杂的情况和任务。AI 大模型、Agent 智能体、知识库、向量数据库、RAG 以及知识图谱等技术都是实现 AGI 的关键要素。它们在不同形态中相互协作,共同推动着人工智能技术的不断进步。

从知识中来,到知识中去!

在这些技术的不断发展和完善下,我们迎来了一个多元化、交叉性强的 AI 应用新时代。它将会发挥更加重要的作用,为人类社会的发展带来更多的机遇和挑战。

其实,每个技术领域都值得好好学习研究一番,认识,实践再应用,只停留在概念层面最多只是会把它当作一种工具一样,知其然知其所以然。但是,在不断地应用,迭代再迭代的趋势下,AI 将会离人们越来越近,越来越普及,目前并不是万能的,先人工后智能 … …

近来,越来越多的产品形态已经开放出来了,其实都可以归结于 AI 这类的应用,基于大模型(LLM)开拓其垂直的业务领域,加上一些基础的微调,嵌入较为丰富的知识库,这在某个程度上来看确实也正在引领产品形态的深刻变革!

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2228467.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

照片不完整?来试试智能扩图,简直不要太满意!(不是广告)

生活中有些照片拍过之后,当时觉得很满意,但过段时间就恨当初没有拍一张完整的图片! ——来自小白的感慨 当时跟家里的叮当一起去旅游,我给他拍了一张好看的照片: 今天这张照片如果是整图就好了!好气哦&am…

idea连接数据库出现错误的解决方式

在使用idea连接数据库时,出现错误: The server has terminated the handshake. The protocol list option (enabledTLSProtocols) is set, this option might cause connection issues with some versions of MySQL. Consider removing the protocol li…

1. STM32环境搭建

1. MDK5(keil) 安装 安装包获取,可以在官网下载 https://www.keil.com/demo/eval/arm.htm 或者通过其他方式获取,下载 下载完有一个安装包和 “钥匙”,解压时关闭杀毒软件,防止被清理掉 1.1 安装 软件安装位置选择:…

map的oj题

第一题 . - 力扣(LeetCode) 第二题 单词识别_牛客题霸_牛客网 解题思路: 1,将数据放入set或者map中去重和更新次数, 即利用set和map的[ ] 2. 将数据放到vector 进行排序 ,还应该利用仿函数写出 Compare() ,因为s…

Android13预置应用及授权开发

在android13中,要预置一个对讲应用,从预置和授权,梳理了一下,以便后续查询使用。在此记录 一放置应用 我的apk应用放在vendor下面, 路径:projectroot/vendor/fly/package/apps/DMR/flydmr.apk (vendor/fl…

【深度学习中的注意力机制9】11种主流注意力机制112个创新研究paper+代码——滑动窗口注意力(Sliding Window Attention)

【深度学习中的注意力机制9】11种主流注意力机制112个创新研究paper代码——滑动窗口注意力(Sliding Window Attention) 【深度学习中的注意力机制9】11种主流注意力机制112个创新研究paper代码——滑动窗口注意力(Sliding Window Attention…

RK3568平台(PWM篇)红外遥控适配

一.红外遥控简介 红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外 接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送 后置放大器。 鉴于家用电器的品种多样化和用户的使用特点,生产厂家对进行…

【Linux初阶】指令操作

上一篇文章(⭐点这里⭐⭐点这里)我们初步对Linux有了一些基本的认识,了解到了Windows的图形化界面操作和Linux的纯命令指令是操作上二者最大的区别,今天我们来继续深入的学习Linux的操作指令,学习一些基本的指令来控制…

跨平台开发支付组件,实现支付宝支付

效果图: custom-payment : 在生成预付订单之后页面中需要弹出一个弹层,弹层中展示的内容为支付方式(渠道),由用户选择一种支付方式进行支付。 该弹层组件是以扩展组件 uni-popup 为核心的,关于…

MFC图形函数学习04——画矩形函数

MFC中绘制矩形函数是MFC的基本绘图函数,它的大小和位置由左上角和右下角的坐标决定;若想绘制的矩形边框线型、线宽、颜色以及填充颜色都还需要其它函数的配合。 一、绘制矩形函数 原型:BOOL Rectangle(int x1,int y1,int x2,int y2); …

【网络面试篇】TCP连接建立(笔记)

目录 一、三次握手 1. 过程描述 2. 为什么是三次握手?不是两次、四次? (1)三次握手才可以阻止重复历史连接的初始化 (2)三次握手才可以同步双方的初始序列号 (3)三次握手才可以…

04.DDD与CQRS

学习视频来源:DDD独家秘籍视频合集 https://space.bilibili.com/24690212/channel/collectiondetail?sid1940048&ctype0 文章目录 定义职责分离DDD与CQRS的关系领域模型和查询模型特点命令场景的领域模型查询场景的查询模型 架构方案领域事件方案1&#xff1a…

树莓派全网最全安装测试(包括系统,显示器,灯,舵机灯测试)

1.下载ubuntu https://cdimage.ubuntu.com/releases/20.04.5/release/ 2.格式化和烧录镜像源 3.修改自己的wifl sd卡直接放回树莓派 4.IP地址 https://www.bilibili.com/video/BV1YD421H7zF/?buvidXU5DB1750D0CD69E8D83AEE359EB6582A7396&is_story_h5false&midMJB9z…

LabVIEW涡扇发动机加力泵测试

LabVIEW软件开发的涡扇发动机加力泵测试平台采用高度集成的硬件设备,实现了对涡扇发动机加力泵的全面测试和分析,从而确保其性能满足严格的航空标准。 项目背景 涡扇发动机是现代飞机的重要动力来源之一,其加力泵的性能直接影响飞机的整体动…

车载中控系统的UI自动化测试实践

本文主要介绍了如何在车载中控系统中实施UI自动化测试的过程,从测试环境的准备到测试用例的设计,再到具体实现方法及注意事项等方面进行了详细的阐述。 引言 随着汽车行业的快速发展,车载中控系统已成为提升驾驶体验的重要组成部分。为了保…

echarts属性之dataZoom

dataZoom-slider 滑动条型数据区域缩放组件(dataZoomInside) 滑动条型数据区域缩放组件提供了数据缩略图显示,缩放,刷选,拖拽,点击快速定位等数据筛选的功能。下图显示了该组件可交互部分 所有属性 data…

牛客小白月赛103(打表、二进制、几何、思维)

文章目录 牛客小白月赛103(打表、二进制、几何、思维)A. 小冰的正多边形B. 冰冰的电子邮箱C. 冰冰的异或(打表、二进制)D. 冰冰的分界线(几何、浮点数处理)E. 冰冰的 GCD(调和级数、思维) 据说F是假题&…

「C/C++」C++17 之 std::variant 安全的联合体(变体)

#1024程序员节|征文# ✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计…

Web3的去中心化社交网络:区块链技术如何改变互动方式

随着互联网技术的不断进步,社交网络正在经历一场深刻的变革。Web3,作为新一代互联网技术的代表,正通过区块链和去中心化理念改变着我们与他人互动的方式。传统的社交网络通常由大型公司控制,用户数据的集中化管理和隐私问题备受关…

代码随想录(十二)——图论

并查集 并查集主要有三个功能。 寻找根节点,函数:find(int u),也就是判断这个节点的祖先节点是哪个将两个节点接入到同一个集合,函数:join(int u, int v),将两个节点连在同一个根节点上判断两个节点是否在…