上一篇文章 【AI大模型】使用谷歌 Gemini API 构建自己的 ChatGPT(一)🚀我们介绍了 Gemini
是什么,以及如何使用Gemini
构建一个多模态的聊天场景示例。这一篇我们使用 langchain
与 Gemini
集成构建应用:
将 Langchain
与 Gemini
集成
Langchain
已成功将Gemini
模型整合到其生态系统中,使用ChatGoogleGenerativeAI
类。
启动该过程需要向ChatGoogleGenerativeAI
类提供所需的Gemini
模型来创建一个llm类。我们调用函数并传递用户输入的内容为参数。
可以通过调用response.content
获取生成的响应。
- 在下面的代码中,我们构建了一个最简单的查询。
from langchain_google_genai import ChatGoogleGenerativeAI
llm = ChatGoogleGenerativeAI(model="gemini-pro")
response = llm.invoke("Explain Quantum Computing in 50 words?")
print(response.content)
在下面的代码中,我们将多个输入传入模型,并获取模型的响应。
batch_responses = llm.batch(
[
"Who is the Prime Minister of India?",
"What is the capital of India?",
]
)
for response in batch_responses:
print(response.content)
在下面的代码中,我们提供了文本和图像输入,并期望模型基于给定的输入生成文本响应。
from langchain_core.messages import HumanMessage
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
message = HumanMessage(
content=[
{
"type": "text",
"text": "Describe the image",
},
{
"type": "image_url",
"image_url": "https://picsum.photos/id/237/200/300"
},
]
)
response = llm.invoke([message])
print(response.content)
HumanMessage
类是 langchain_core
Message
库,用于将内容结构化为包含属性 type
、text
和 image_url
的字典列表。该列表传递给 llm.invoke()
函数,并可以使用 ``response.content` 访问响应内容。
- 在下面的代码中,我们要求模型找出给定图像之间的差异。
from langchain_core.messages import HumanMessage
llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")
message = HumanMessage(
content=[
{
"type": "text",
"text": "Find the differences between the given images",
},
{
"type": "image_url",
"image_url": "https://picsum.photos/id/237/200/300"
},
{
"type": "image_url",
"image_url": "https://picsum.photos/id/219/5000/3333"
}
]
)
response = llm.invoke([message])
print(response.content)
脑洞大开,我们可以做一个这样找不同的程序了。🤪
使用 Gemini API 创建一个 ChatGPT
我们玩够了 Gemini 后,使用 Streamlit
和 Gemini
构建类似 ChatGPT
的简单应用程序。
- 创建一个名为gemini-bot.py的文件,并将以下代码添加到其中。
import streamlit as st
import os
import google.generativeai as genai
st.title("Gemini Bot")
os.environ['GOOGLE_API_KEY'] = "AIzaSyAjsDpD-XXXXXXXXXXXXX"
genai.configure(api_key = os.environ['GOOGLE_API_KEY'])
# 配置 model
model = genai.GenerativeModel('gemini-pro')
# 初始化 message
if "messages" not in st.session_state:
st.session_state.messages = [
{
"role":"assistant",
"content":"Ask me Anything"
}
]
# 重新运行应用程序时显示来自历史记录的聊天消息
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# 处理并储存和回复。
def llm_function(query):
response = model.generate_content(query)
# 显示助手消息
with st.chat_message("assistant"):
st.markdown(response.text)
# 保存用户信息
st.session_state.messages.append(
{
"role":"user",
"content": query
}
)
# 保存用户信息
st.session_state.messages.append(
{
"role":"assistant",
"content": response.text
}
)
# 输入我们的问题
query = st.chat_input("What's up?")
# 当输入时调用该函数。
if query:
# 显示用户的回答
with st.chat_message("user"):
st.markdown(query)
llm_function(query)
- 通过执行以下命令来运行该应用程序。
streamlit run gemini-bot.py
- 点击终端显示的链接以访问该应用程序。
总结:
- Gemini AI是谷歌创建的一组大型语言模型,具备处理多模态数据(文本、图像、音频等)的能力,能够进行复杂推理并生成多种类型的输出。
- Gemini 的多模态能力:Gemini AI 由谷歌开发,具有处理文本、图像、音频和代码等多种数据类型的能力,能够理解和响应复杂的多模态提示。
- 生成文本和安全性:通过示例代码展示了如何使用 Gemini 模型生成文本响应,并且模型内置的安全功能可以防止不当查询,如入侵电子邮件或制造武器的请求。
- 超参数配置:可以配置诸如温度、top_k、top_p 等超参数,以控制生成文本的随机性、长度和多样性,从而满足不同的应用需求。
- 视觉和多模态任务:使用 Gemini 的 gemini-pro-vision 模型,可以实现图像解释、基于图像生成故事以及对图像中的对象进行识别和计数等功能,展示了其在多模态处理上的强大能力。
- 文章演示了如何使用
Gemini API
进行文本生成和基于视觉的任务,包括解释图像内容、根据图片写故事以及计算图像中的对象数量。 - 使用
Langchain
库可以简化与Gemini
模型的集成,使得处理文本和图像输入更加方便,并能够批量处理多个查询。 - 最后,展示了如何使用
Streamlit
框架与Gemini
模型结合,构建一个类似ChatGPT
的聊天应用程序,并通过示例代码展示了具体的实现步骤。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈