【Linux驱动开发】设备树节点驱动开发入门

news2024/10/26 22:52:47

【Linux驱动开发】设备树节点驱动开发入门

文章目录

  • 设备树文件
  • 设备树文件驱动开发
  • 附录:嵌入式Linux驱动开发基本步骤
    • 开发环境
    • 驱动文件
      • 编译驱动
      • 安装驱动
      • 自动创建设备节点文件
    • 驱动开发
      • 驱动设备号
      • 地址映射,虚拟内存和硬件内存地址
      • 字符驱动
        • 旧字符驱动
        • 新字符驱动
    • 应用程序开发

设备树文件

设备树源文件扩展名为.dts
编译后得到的文件为.dtb文件
如果要编译 DTS 文件的话只需要进入到 Linux 源码根目录下,然后执行如下命
令:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- all

或者:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- dtbs

编译指定的设备树文件则是:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- stm32mp135d-atk.dtb

dts文件与C类似
也是通过#include来导入库
通过大括号来定义变量范围等等
其中 /表示根节点
根节点下又有很多设备节点 比如soc gpio 等等
对于设备节点 其最重要的是reg属性
reg 属性的值一般是(address,length)对。reg 属性一般用于描
述设备地址空间资源信息或者设备地址信息,比如某个外设的寄存器地址范围信息
如:

reg = <0x40011000 0x400>;
reg = <0X50000A28 0X04 /* RCC_MP_AHB4ENSETR */
	 0X5000A000 0X04 /* GPIOI_MODER */
	0X5000A004 0X04 /* GPIOI_OTYPER */
	0X5000A008 0X04 /* GPIOI_OSPEEDR */
	0X5000A00C 0X04 /* GPIOI_PUPDR */
	0X5000A018 0X04 >; /* GPIOI_BSRR */

等等
下面那个写法 就表示该节点有一系列的reg寄存器表
除此之外 设备节点也有status、model、compatible等属性
并不是所有属性都必须要进行编写 具体根据设备来看

譬如在根节点下添加一个新的节点:

	stm32mp1_led {
		compatible = "atkstm32mp1-led";
		status = "okay";
		reg = <0X50000A28 0X04 /* RCC_MP_AHB4ENSETR */
		0X5000A000 0X04 /* GPIOI_MODER */
		0X5000A004 0X04 /* GPIOI_OTYPER */
		0X5000A008 0X04 /* GPIOI_OSPEEDR */
		0X5000A00C 0X04 /* GPIOI_PUPDR */
		0X5000A018 0X04 >; /* GPIOI_BSRR */
	};

属性 compatible 设置 stm32mp1_led 节点兼容为“atkstm32mp1-led”。
属性 status 设置状态为“okay”。
以及reg 属性的地址段
设备树修改完成以后输入如下命令重新编译一下 stm32mp135d-atk.dts:

source /etc/profile
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- dtbs

编译完成以后得到 stm32mp135d-atk.dtb,使用新的 stm32mp135d-tk.dtb 替换到文件系统/lib/modules 目录下,使用 sync 指令同步缓存,启动 Linux 内核。Linux 启动成功以后进入到/proc/device-tree/目录中就能看到stm32mp1_led这个节点
记得一定要使用 sync 指令同步缓存

设备树文件驱动开发

通过OF函数可以实现对设备树中的设备节点的读取
of_property_read_u32_array函数可以实现读取reg 属性
类似的还有以下这些函数 分别对应不同的长度

int of_property_read_u8_array(const struct device_node *np,
const char *propname, 
u8 *out_values, 
size_t sz)
int of_property_read_u16_array(const struct device_node *np,
 const char *propname, 
 u16 *out_values, 
 size_t sz)
int of_property_read_u32_array(const struct device_node *np,
 const char *propname, 
 u32 *out_values,
 size_t sz)
int of_property_read_u64_array(const struct device_node *np,
 const char *propname, 
 u64 *out_values,
 size_t sz)

函数参数和返回值含义如下:
np:设备节点。
proname: 要读取的属性名字。
out_value:读取到的数组值,分别为 u8、u16、u32 和 u64。
sz:要读取的数组元素数量。
返回值:0,读取成功,负值,读取失败,-EINVAL 表示属性不存在,-ENODATA 表示没
有要读取的数据,-EOVERFLOW 表示属性值列表太小。

读取后 就会保存在device_node类型的变量中
在提取地址时 可以通过of_iomap函数替代 ioremap函数来进行虚拟地址映射

void __iomem *of_iomap(struct device_node *np, int index)

其中 index表示第几段reg属性的地址 从0开始
如果 reg 属性只有一段的话 index 就设置为 0。

同样 也可以在out_values获取地址 然后用 ioremap函数来进行虚拟地址映射

在开发时 需要定义个设备节点变量 如:

device_node *nd;

然后通过OF函数获取这个设备节点的内容

dtsled.nd = of_find_node_by_path("/stm32mp1_led");
...
of_property_read_u32_array(dtsled.nd, "reg", regdata, 12);

最后 就跟普通的驱动开发一样了

附录:嵌入式Linux驱动开发基本步骤

开发环境

首先需要交叉编译器和Linux环境
这里如果是ARM内核 则需要采用ARM的交叉编译器编译器:

arm-none-linux-gnueabihf-gcc

同时需要目标ARM板子的Linux系统内核环境
并编译内核:

make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- stm32mp1_atk_defconfig
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- uImage vmlinux dtbs LOADADDR=0xC2000040 -j4
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- stm32mp1_atk_defconfig
make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf- modules -j4

如果是第一次编译 则可能有所不同 需要根据实际手册来

以下是我编译好 打包好的虚拟机

通过百度网盘分享的文件:适用于STM32MP135开发板的开发环境虚拟机
链接:https://pan.baidu.com/s/1Sf_wk2gEPj0JlQ7X_rpQcg 
提取码:d9sj

驱动文件

对于已完成的驱动开发 需要进行编译后进行安装
所有驱动文件在开发上都需要进行驱动入口和出口开发
譬如需要编写驱动入口和退出函数

static int __init xxx_init(void)
static void __exit xxx_exit(void)

然后再模块注册 需要调用到以下函数:

module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数

最后在结尾添加作者和许可信息

MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");
MODULE_INFO(intree, "Y");

为了欺骗内核,给本驱动添加 intree 标记,如果不加就会有“loading out-of-tree module taints kernel.”这个警告。
然后才能编译驱动

编译驱动

编译前要配置环境变量:

source /etc/profile

需要先在此文件中 指定环境所在目录
Makefile

KERNELDIR := /home/alientek/linux/atk-mp135/linux/my_linux/linux-5.15.24
CURRENT_PATH := $(shell pwd)

obj-m := test.o

build: kernel_modules

kernel_modules:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules

clean:
	$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean


make ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabihf-

安装驱动

将编译好的驱动推荐放置到ARM板子的/lib/modules/<kernel-version>目录下

加载驱动:
insmod test.komodprobe test
建议用modprobe 原因是可以解决依赖关系
在这里插入图片描述

查看已安装的模块:
使用lsmodcat /proc/devices查看 其中 还能看到已安装的驱动设备号(新安装的不能重复)

创建设备节点文件:(如果自动创建就不需要)

mknod /dev/test c 200 0

查看节点文件:

ls /dev/test -l

在这里插入图片描述
最后如果不需要了 则卸载
卸载模块:
rmmod testmodprobe -r test

自动创建设备节点文件

使用udevmdev即可实现自动创建
如果要使用 则在驱动开发中写入到驱动入口函数中
(一般在 cdev_add 函数后面添加自动创建设备节点相关代码 一些具体的变量和说明见后文新字符驱动开发)
完成开发后 安装驱动时就自动帮你创建好驱动设备节点文件

否则就需要手动去添加

首先要创建一个 class 类,class 是个结构体,定义在文件include/linux/device/class.h 里面。class_create 是类创建函数,class_create 是个宏定义

struct class *class_create (struct module *owner, const char *name)

class_create 一共有两个参数,参数 owner 一般为 THIS_MODULE,参数 name 是类名字
卸载驱动程序的时候需要删除掉类,类删除函数为 class_destroy,函数原型如下:

void class_destroy(struct class *cls);

然后使用 device_create 函数在类下面创建设备

device_create(struct class *cls,
 struct device *parent,
 dev_t devt,
 void *drvdata,
 const char *fmt, ...);

参数 cls 就是设备要创建哪个类下面;参数 parent 是父设备,一般为 NULL,也就是没有父设备;参数 devt 是设备号;参数 drvdata 是设备可能会使用的一些数据,一般为 NULL;参数 fmt 是设备名字,如果设置 fmt=xxx 的话,就会生成/dev/xxx 这个设备文件。
卸载则调用:

void device_destroy(struct class *cls, dev_t devt);

如在已知设备号的情况下进行注册:

struct class *class; /* 类 */ 
struct device *device; /* 设备 */
dev_t devid; /* 设备号 */ 

/* 驱动入口函数 */
 static int __init xxx_init(void)
{
 /* 创建类 */
class = class_create(THIS_MODULE, "xxx");
/* 创建设备 */
device = device_create(class, NULL, devid, NULL, "xxx");
return 0;
}

/* 驱动出口函数 */
 static void __exit led_exit(void)
{
 /* 删除设备 */
 device_destroy(newchrled.class, newchrled.devid);
 /* 删除类 */
class_destroy(newchrled.class);
 }

module_init(led_init);
module_exit(led_exit);

以上这些设备号、类、驱动等变量太多 可以用一个结构体来表示

/* 设备结构体 */
struct test_dev{
dev_t devid; /* 设备号 */
struct cdev cdev; /* cdev */
struct class *class; /* 类 */
struct device *device; /* 设备 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
};

通过将此结构体写入到驱动文件的私有变量中 即可使开发变得安全、规范
如:

struct test_dev testdev;

 /* open 函数 */
static int test_open(struct inode *inode, struct file *filp)
{
filp->private_data = &testdev; /* 设置私有数据 */
return 0;
}

驱动开发

通过开发字符驱动等设备 编译成驱动*.ko文件 然后安装后即可调用

驱动设备号

驱动主要有主设备号 次设备号和驱动名
可以自定义 也可以自动申请
自定义的话 主设备号不能用冲突

查看已安装的模块:
使用lsmodcat /proc/devices查看 其中 还能看到已安装的驱动设备号(新安装的不能重复)

如果不采用分配的方式进行 直接自定义的话 就不需要看这一节下面的内容了
但如果要分配设备号的话 这里引入dev_t类型的设备号变量:

动态分配则用以下函数申请:

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)

函数 alloc_chrdev_region 用于申请设备号,此函数有 4 个参数:
dev:保存申请到的设备号。
baseminor:次设备号起始地址,alloc_chrdev_region 可以申请一段连续的多个设备号,这
些设备号的主设备号一样,但是次设备号不同,次设备号以 baseminor 为起始地址地址开始递
增。一般 baseminor 为 0,也就是说次设备号从 0 开始。
count:要申请的设备号数量。
name:设备名字。
注销字符设备之后要释放掉设备号,设备号释放函数如下:

void unregister_chrdev_region(dev_t from, unsigned count)

或者采用以下两个函数都能来进行申请 第二个函数首先得是确定了主设备号的

//无设备号
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)
//给定了设备号
int register_chrdev_region(dev_t from, unsigned count, const char *name)

如:

int major; /* 主设备号 */
int minor; /* 次设备号 */
dev_t devid; /* 设备号 */
 
 if (major) { /* 定义了主设备号 */
 devid = MKDEV(major, 0); /* 大部分驱动次设备号都选择 0*/
register_chrdev_region(devid, 1, "test");
} else { /* 没有定义设备号 */
alloc_chrdev_region(&devid, 0, 1, "test"); /* 申请设备号 */
 major = MAJOR(devid); /* 获取分配号的主设备号 */
 minor = MINOR(devid); /* 获取分配号的次设备号 */
 }

如果 major 有效的话就使用 MKDEV 来构建设备号,次设备号选择 0。
如果 major 无效,那就表示没有给定设备号。此时就要使用 alloc_chrdev_region
函数来申请设备号。设备号申请成功以后使用 MAJOR 和 MINOR 来提取出主设备号和次设备

注销字符设备之后要释放掉设备号 则是调用:

void unregister_chrdev_region(dev_t from, unsigned count)

直接传入设备号数量即可

地址映射,虚拟内存和硬件内存地址

Linux设备如果最后要操作寄存器进行开发的话 不可避免的会使用内核寄存器
Linux设备如今大多已支持直接从硬件地址读写 但不建议直接采用
对于安装了MMU的设备 可以通过MMU映射到虚拟内存地址 然后对虚拟内存读写后内核则进行物理地址操作
ioremap 函数用于获取指定物理地址空间对应的虚拟地址空间

void __iomem *ioremap(resource_size_t res_cookie, size_t size);

卸载则用:

void iounmap (volatile void __iomem *addr)

Linux设备最好是通过虚拟内存来访问 并且用以下的几组函数来操作内存
使用 ioremap 函数将寄存器的物理地址映射到虚拟地址以后,我们就可以直接通过指针访问这些地址,但是 Linux 内核不建议这么做,而是推荐使用一组操作函数来对映射后的内存进行读写操作。
读:

 u8 readb(const volatile void __iomem *addr)
 u16 readw(const volatile void __iomem *addr)
 u32 readl(const volatile void __iomem *addr)

写:

 void writeb(u8 value, volatile void __iomem *addr)
 void writew(u16 value, volatile void __iomem *addr)
 void writel(u32 value, volatile void __iomem *addr)

字符驱动

其中 所有的外设、驱动等 都可以用字符驱动来开发 但不一定方便
因为字符驱动只能进行简单的打开 销毁 读写等
虽然本质上驱动的开发也是寄存器的读写 但用字符设备还是限制性很大

字符驱动可以实现open close write read等操作
另外字符驱动的文件结构体file中
有一个private_data变量 也就是私有变量 可以在初始化时将一些外部参数初始化成该变量存入

设置好好以后 就可以在在 write、read、close 等函数中直接读取 private_data即可得到设备结构体

旧字符驱动

字符驱动就是file文件驱动 在应用层用open read write close等函数来操作
字符驱动注册和注销需要:

static inline int register_chrdev(unsigned int major, 
const char *name,
const struct file_operations *fops)
static inline void unregister_chrdev(unsigned int major, 
const char *name)

需要编写驱动入口和退出函数

static int __init xxx_init(void)
static void __exit xxx_exit(void)

然后再模块注册 需要调用到以下函数:

module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数

在驱动入口和退出函数中调用register_chrdevunregister_chrdev函数进行字符驱动的注册与注销
其中 注册时需要传参设备号、名称和file_operations结构体
结构体中需要指定函数名称 该结构体下全是回调函数(函数指针)但也不是全部都要写 不过必须得几项必须要填
如:

static struct file_operations test_fops = {
 .owner = THIS_MODULE, 
.open = chrtest_open,
.read = chrtest_read,
 .write = chrtest_write,
.release = chrtest_release,
};

另外 在write和read函数中 用户不得直接访问内存空间 所以要借助copy_from_usercopy_to_user来进行操作

最后在结尾添加作者和许可信息

MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");
MODULE_INFO(intree, "Y");

为了欺骗内核,给本驱动添加 intree 标记,如果不加就会有“loading out-of-tree module taints kernel.”这个警告。
完整的代码如:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/init.h>
#include <linux/module.h>

/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: chrdevbase.c
作者	  	: 正点原子
版本	   	: V1.0
描述	   	: chrdevbase驱动文件。
其他	   	: 无
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2020/12/26 正点原子创建
***************************************************************/

#define CHRDEVBASE_MAJOR	200				/* 主设备号 */
#define CHRDEVBASE_NAME		"chrdevbase" 	/* 设备名     */

static char readbuf[100];		/* 读缓冲区 */
static char writebuf[100];		/* 写缓冲区 */
static char kerneldata[] = {"kernel data!"};

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int chrdevbase_open(struct inode *inode, struct file *filp)
{
	//printk("chrdevbase open!\r\n");
	return 0;
}

/*
 * @description		: 从设备读取数据 
 * @param - filp 	: 要打开的设备文件(文件描述符)
 * @param - buf 	: 返回给用户空间的数据缓冲区
 * @param - cnt 	: 要读取的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t chrdevbase_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	int retvalue = 0;
	
	/* 向用户空间发送数据 */
	memcpy(readbuf, kerneldata, sizeof(kerneldata));
	retvalue = copy_to_user(buf, readbuf, cnt);
	if(retvalue == 0){
		printk("kernel senddata ok!\r\n");
	}else{
		printk("kernel senddata failed!\r\n");
	}
	
	//printk("chrdevbase read!\r\n");
	return 0;
}

/*
 * @description		: 向设备写数据 
 * @param - filp 	: 设备文件,表示打开的文件描述符
 * @param - buf 	: 要写给设备写入的数据
 * @param - cnt 	: 要写入的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 写入的字节数,如果为负值,表示写入失败
 */
static ssize_t chrdevbase_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
	int retvalue = 0;
	/* 接收用户空间传递给内核的数据并且打印出来 */
	retvalue = copy_from_user(writebuf, buf, cnt);
	if(retvalue == 0){
		printk("kernel recevdata:%s\r\n", writebuf);
	}else{
		printk("kernel recevdata failed!\r\n");
	}
	
	//printk("chrdevbase write!\r\n");
	return 0;
}

/*
 * @description		: 关闭/释放设备
 * @param - filp 	: 要关闭的设备文件(文件描述符)
 * @return 			: 0 成功;其他 失败
 */
static int chrdevbase_release(struct inode *inode, struct file *filp)
{
	//printk("chrdevbase release!\r\n");
	return 0;
}

/*
 * 设备操作函数结构体
 */
static struct file_operations chrdevbase_fops = {
	.owner = THIS_MODULE,	
	.open = chrdevbase_open,
	.read = chrdevbase_read,
	.write = chrdevbase_write,
	.release = chrdevbase_release,
};

/*
 * @description	: 驱动入口函数 
 * @param 		: 无
 * @return 		: 0 成功;其他 失败
 */
static int __init chrdevbase_init(void)
{
	int retvalue = 0;

	/* 注册字符设备驱动 */
	retvalue = register_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME, &chrdevbase_fops);
	if(retvalue < 0){
		printk("chrdevbase driver register failed\r\n");
	}
	printk("chrdevbase init!\r\n");
	return 0;
}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit chrdevbase_exit(void)
{
	/* 注销字符设备驱动 */
	unregister_chrdev(CHRDEVBASE_MAJOR, CHRDEVBASE_NAME);
	printk("chrdevbase exit!\r\n");
}

/* 
 * 将上面两个函数指定为驱动的入口和出口函数 
 */
module_init(chrdevbase_init);
module_exit(chrdevbase_exit);

/* 
 * LICENSE和作者信息
 */
MODULE_LICENSE("GPL");
MODULE_AUTHOR("ALIENTEK");
MODULE_INFO(intree, "Y");

然后就可以开始编译

新字符驱动

新字符驱动可以自动生成设备树文件等 比较方便 开发的方式大同小异
在 Linux 中使用 cdev 结构体表示一个字符设备,cdev 结构体在 include/linux/cdev.h 文件中
的定义如下:
示例代码 9.1.2.1 cdev 结构体

struct cdev {
struct kobject kobj;
struct module *owner;
const struct file_operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;
} __randomize_layout;

可以看到 里面包含了file_operations 结构体 以及dev_t 变量等等
定义了cdev变量后 需要进行初始化

void cdev_init(struct cdev *cdev, const struct file_operations *fops)

这里就需要传参file_operations变量了
这两个结构体的.owner都要为THIS_MODULE
如:

 struct cdev testcdev;

/* 设备操作函数 */
static struct file_operations test_fops = {
 .owner = THIS_MODULE,
 /* 其他具体的初始项 */
 };
 
testcdev.owner = THIS_MODULE;
cdev_init(&testcdev, &test_fops); 
cdev_add(&testcdev, devid, 1);

初始化后 使用以下函数往cdev中添加dev设备号变量
这里要注意 虽然cdev中有dev变量 但不能直接赋值 需要使用cdev_add函数来添加
事实上 无论是写入dev还是读取dev 都不可直接在cdev中进行操作
(如果是C++ 就可以规定私有属性了 但C语言这里不行)

int cdev_add(struct cdev *p, dev_t dev, unsigned count)

卸载时则需要删除cdev

void cdev_del(struct cdev *p)

同时也要用unregister_chrdev_region函数去注销外部的dev变量

加上自动创建设备树等功能 则完整代码为:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>

#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: newchrled.c
作者	  	: 正点原子
版本	   	: V1.0
描述	   	: LED驱动文件。
其他	   	: 无
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2020/11/24 正点原子团队创建
***************************************************************/
#define NEWCHRLED_CNT			1		  	/* 设备号个数 */
#define NEWCHRLED_NAME			"newchrled"	/* 名字 */
#define LEDOFF 					0			/* 关灯 */
#define LEDON 					1			/* 开灯 */
 
/* 寄存器物理地址 */
#define PERIPH_BASE     		     	(0x40000000)
#define MPU_AHB4_PERIPH_BASE			(PERIPH_BASE + 0x10000000)
#define RCC_BASE        		    	(MPU_AHB4_PERIPH_BASE + 0x0000)	
#define RCC_MP_AHB4ENSETR				(RCC_BASE + 0XA28)
#define GPIOI_BASE						(MPU_AHB4_PERIPH_BASE + 0xA000)	
#define GPIOI_MODER      			    (GPIOI_BASE + 0x0000)	
#define GPIOI_OTYPER      			    (GPIOI_BASE + 0x0004)	
#define GPIOI_OSPEEDR      			    (GPIOI_BASE + 0x0008)	
#define GPIOI_PUPDR      			    (GPIOI_BASE + 0x000C)	
#define GPIOI_BSRR      			    (GPIOI_BASE + 0x0018)

/* 映射后的寄存器虚拟地址指针 */
static void __iomem *MPU_AHB4_PERIPH_RCC_PI;
static void __iomem *GPIOI_MODER_PI;
static void __iomem *GPIOI_OTYPER_PI;
static void __iomem *GPIOI_OSPEEDR_PI;
static void __iomem *GPIOI_PUPDR_PI;
static void __iomem *GPIOI_BSRR_PI;

/* newchrled设备结构体 */
struct newchrled_dev{
	dev_t devid;			/* 设备号 	 */
	struct cdev cdev;		/* cdev 	*/
	struct class *class;		/* 类 		*/
	struct device *device;	/* 设备 	 */
	int major;				/* 主设备号	  */
	int minor;				/* 次设备号   */
};

struct newchrled_dev newchrled;	/* led设备 */

/*
 * @description		: LED打开/关闭
 * @param - sta 	: LEDON(0) 打开LED,LEDOFF(1) 关闭LED
 * @return 			: 无
 */
void led_switch(u8 sta)
{
	u32 val = 0;
	if(sta == LEDON) {
		val = readl(GPIOI_BSRR_PI);
		val |= (1 << 19);	
		writel(val, GPIOI_BSRR_PI);
	}else if(sta == LEDOFF) {
		val = readl(GPIOI_BSRR_PI);
		val|= (1 << 3);	
		writel(val, GPIOI_BSRR_PI);
	}	
}

/*
 * @description		: 取消映射
 * @return 			: 无
 */
void led_unmap(void)
{
		/* 取消映射 */
	iounmap(MPU_AHB4_PERIPH_RCC_PI);
	iounmap(GPIOI_MODER_PI);
	iounmap(GPIOI_OTYPER_PI);
	iounmap(GPIOI_OSPEEDR_PI);
	iounmap(GPIOI_PUPDR_PI);
	iounmap(GPIOI_BSRR_PI);
}

/*
 * @description		: 打开设备
 * @param - inode 	: 传递给驱动的inode
 * @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量
 * 					  一般在open的时候将private_data指向设备结构体。
 * @return 			: 0 成功;其他 失败
 */
static int led_open(struct inode *inode, struct file *filp)
{
	filp->private_data = &newchrled; /* 设置私有数据 */
	return 0;
}

/*
 * @description		: 从设备读取数据 
 * @param - filp 	: 要打开的设备文件(文件描述符)
 * @param - buf 	: 返回给用户空间的数据缓冲区
 * @param - cnt 	: 要读取的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
	return 0;
}

/*
 * @description		: 向设备写数据 
 * @param - filp 	: 设备文件,表示打开的文件描述符
 * @param - buf 	: 要写给设备写入的数据
 * @param - cnt 	: 要写入的数据长度
 * @param - offt 	: 相对于文件首地址的偏移
 * @return 			: 写入的字节数,如果为负值,表示写入失败
 */
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
	int retvalue;
	unsigned char databuf[1];
	unsigned char ledstat;

	retvalue = copy_from_user(databuf, buf, cnt);
	if(retvalue < 0) {
		printk("kernel write failed!\r\n");
		return -EFAULT;
	}

	ledstat = databuf[0];		/* 获取状态值 */

	if(ledstat == LEDON) {	
		led_switch(LEDON);		/* 打开LED灯 */
	} else if(ledstat == LEDOFF) {
		led_switch(LEDOFF);	/* 关闭LED灯 */
	}
	return 0;
}

/*
 * @description		: 关闭/释放设备
 * @param - filp 	: 要关闭的设备文件(文件描述符)
 * @return 			: 0 成功;其他 失败
 */
static int led_release(struct inode *inode, struct file *filp)
{
	return 0;
}

/* 设备操作函数 */
static struct file_operations newchrled_fops = {
	.owner = THIS_MODULE,
	.open = led_open,
	.read = led_read,
	.write = led_write,
	.release = 	led_release,
};

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static int __init led_init(void)
{
	u32 val = 0;
	int ret;

	/* 初始化LED */
	/* 1、寄存器地址映射 */
    MPU_AHB4_PERIPH_RCC_PI = ioremap(RCC_MP_AHB4ENSETR, 4);
    GPIOI_MODER_PI = ioremap(GPIOI_MODER, 4);
    GPIOI_OTYPER_PI = ioremap(GPIOI_OTYPER, 4);
    GPIOI_OSPEEDR_PI = ioremap(GPIOI_OSPEEDR, 4);
    GPIOI_PUPDR_PI = ioremap(GPIOI_PUPDR, 4);
    GPIOI_BSRR_PI = ioremap(GPIOI_BSRR, 4);

    /* 2、使能PI时钟 */
    val = readl(MPU_AHB4_PERIPH_RCC_PI);
    val &= ~(0X1 << 8); /* 清除以前的设置 */
    val |= (0X1 << 8);  /* 设置新值 */
    writel(val, MPU_AHB4_PERIPH_RCC_PI);

    /* 3、设置PI3通用的输出模式。*/
    val = readl(GPIOI_MODER_PI);
    val &= ~(0X3 << 3); /* bit0:1清零 */
    val |= (0X1 << 3);  /* bit0:1设置01 */
    writel(val, GPIOI_MODER_PI);

    /* 3、设置PI3为推挽模式。*/
    val = readl(GPIOI_OTYPER_PI);
    val &= ~(0X1 << 3); /* bit0清零,设置为上拉*/
    writel(val, GPIOI_OTYPER_PI);

    /* 4、设置PI3为高速。*/
    val = readl(GPIOI_OSPEEDR_PI);
    val &= ~(0X3 << 3); /* bit0:1 清零 */
    val |= (0x2 << 3); /* bit0:1 设置为10*/
    writel(val, GPIOI_OSPEEDR_PI);

    /* 5、设置PI3为上拉。*/
    val = readl(GPIOI_PUPDR_PI);
    val &= ~(0X3 << 3); /* bit0:1 清零*/
    val |= (0x1 << 3); /*bit0:1 设置为01*/
    writel(val,GPIOI_PUPDR_PI);

    /* 6、默认关闭LED */
    val = readl(GPIOI_BSRR_PI);
    val |= (0x1 << 3);
    writel(val, GPIOI_BSRR_PI);


	/* 注册字符设备驱动 */
	/* 1、创建设备号 */
	if (newchrled.major) {		/*  定义了设备号 */
		newchrled.devid = MKDEV(newchrled.major, 0);
		ret = register_chrdev_region(newchrled.devid, NEWCHRLED_CNT, NEWCHRLED_NAME);
		if(ret < 0) {
			pr_err("cannot register %s char driver [ret=%d]\n",NEWCHRLED_NAME, NEWCHRLED_CNT);
			goto fail_map;
		}
	} else {						/* 没有定义设备号 */
		ret = alloc_chrdev_region(&newchrled.devid, 0, NEWCHRLED_CNT, NEWCHRLED_NAME);	/* 申请设备号 */
		if(ret < 0) {
			pr_err("%s Couldn't alloc_chrdev_region, ret=%d\r\n", NEWCHRLED_NAME, ret);
			goto fail_map;
		}
		newchrled.major = MAJOR(newchrled.devid);	/* 获取分配号的主设备号 */
		newchrled.minor = MINOR(newchrled.devid);	/* 获取分配号的次设备号 */
	}
	printk("newcheled major=%d,minor=%d\r\n",newchrled.major, newchrled.minor);	
	
	/* 2、初始化cdev */
	newchrled.cdev.owner = THIS_MODULE;
	cdev_init(&newchrled.cdev, &newchrled_fops);
	
	/* 3、添加一个cdev */
	ret = cdev_add(&newchrled.cdev, newchrled.devid, NEWCHRLED_CNT);
	if(ret < 0)
		goto del_unregister;
		
	/* 4、创建类 */
	newchrled.class = class_create(THIS_MODULE, NEWCHRLED_NAME);
	if (IS_ERR(newchrled.class)) {
		goto del_cdev;
	}

	/* 5、创建设备 */
	newchrled.device = device_create(newchrled.class, NULL, newchrled.devid, NULL, NEWCHRLED_NAME);
	if (IS_ERR(newchrled.device)) {
		goto destroy_class;
	}
	
	return 0;

destroy_class:
	class_destroy(newchrled.class);
del_cdev:
	cdev_del(&newchrled.cdev);
del_unregister:
	unregister_chrdev_region(newchrled.devid, NEWCHRLED_CNT);
fail_map:
	led_unmap();
	return -EIO;

}

/*
 * @description	: 驱动出口函数
 * @param 		: 无
 * @return 		: 无
 */
static void __exit led_exit(void)
{
	/* 取消映射 */
   led_unmap();
   
	/* 注销字符设备驱动 */
	cdev_del(&newchrled.cdev);/*  删除cdev */
	unregister_chrdev_region(newchrled.devid, NEWCHRLED_CNT); /* 注销设备号 */

	device_destroy(newchrled.class, newchrled.devid);
	class_destroy(newchrled.class);
}

module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("ALIENTEK");
MODULE_INFO(intree, "Y");

然后就可以去编译了

应用程序开发

所谓应用程序 就是调用驱动就行各种任务 这里是Linux C应用开发
当然 如果你用Python啥的去调用驱动也可以
应用程序可以对/dev/下的驱动进行读写等操作 前提是已经安装了驱动
开发后 使用一条简单的命令即可编译
测试的应用程序采用open等函数进行驱动操作 写好后执行编译

arm-none-linux-gnueabihf-gcc test_app.c -o test_app

最后进行测试即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2224242.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis 集群 总结

前言 相关系列 《Redis & 目录》&#xff08;持续更新&#xff09;《Redis & 集群 & 源码》&#xff08;学习过程/多有漏误/仅作参考/不再更新&#xff09;《Redis & 集群 & 总结》&#xff08;学习总结/最新最准/持续更新&#xff09;《Redis & 集群…

Postman常见问题及解决方(全)

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 1、网络连接问题 如果Postman无法发送请求或接收响应&#xff0c;可以尝试以下操作&#xff1a; 检查网络连接是否正常&#xff0c;包括检查网络设置、代理设置…

接口测试(五)jmeter——get请求

一、get请求——短信验证码&#xff08;示例仅供参考&#xff09; 1. get请求&#xff1a;传参数据直接拼接在地址后面&#xff0c;jmeter不需要设置请求头content-type 注&#xff1a;短信验证码接口&#xff0c;返回结果中不会返回短信验证码&#xff0c;是存在数据库表中&a…

Pyramidal Flow使用指南:快手、北大、北邮,开源可免费商用视频生成模型,快速上手教程

什么是 Pyramidal Flow&#xff1f; Pyramidal Flow 是由快手科技、北京大学和北京邮电大学联合推出的开源视频生成模型&#xff0c;它是完全开源的&#xff0c;发布在 MIT 许可证下&#xff0c;允许商业使用、修改和再分发。该模型能够通过文本描述生成最高10秒、分辨率为128…

EveryoneNobel:为每个人打造诺贝尔奖风格的纪念图片

在这个充满荣誉和成就的时代&#xff0c;EveryoneNobel 项目应运而生&#xff0c;旨在为每个人提供一个生成诺贝尔奖风格纪念图片的机会。通过利用 ComfyUI 进行图像生成&#xff0c;结合 HTML 模板展示文字&#xff0c;不仅提供了一个生成诺贝尔奖图片的流程&#xff0c;而且构…

【Python爬虫实战】Selenium自动化网页操作入门指南

#1024程序员节&#xff5c;征文# &#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 目录 前言 一、准备工作 &#xff08;一&#xff09;安装 Selenium 库 &#xff0…

2024 年我的 MacBook 软件开发设置分享

在过去的一年里&#xff0c;我的 MacBook 软件开发环境经历了一些变化。今天&#xff0c;我想分享我的最新设置、工作流程和工具&#xff0c;帮助你在软件开发中提升效率。 我的工作设备 &#x1f4bb; 我目前使用的是 16 英寸的 MacBook Pro M1 Max。这台机器的性能令人印象…

「C/C++」C++ STL容器库 之 std::multimap 键值对的集合容器

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「C/C」C/C程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…

化验单智能识别与数据抽取:AI平台赋能医疗信息化

化验单处理在医院日常运作中常遇信息量大、数据整理不易、效率低的问题。思通数科推出的AI多模态平台&#xff0c;借助光学字符识别&#xff08;OCR&#xff09;、图像处理等技术&#xff0c;提供了一款开源化验单智能识别系统&#xff0c;能迅速识别、提取和分析化验单数据。 …

【云原生网关】Higress 从部署到使用详解

目录 二、网关概述 2.1 什么是云原生网关 2.2 常见的云原生网关 2.2.1 Nginx 2.2.2 ApiSix 2.2.3 Kong 2.2.4 Apache Shenyu 2.2.5 Higress 2.2.6 Envoy​​​​​​​ 三、higress介绍 3.1 什么是higress 3.2 Higress 定位 3.3 Higress 内核选择 四、Higress搭…

10.22.2024刷华为OD C题型(三)--for循环例子

脚踝动了手术&#xff0c;现在宾馆恢复&#xff0c;伤筋动骨一百天还真不是说笑的&#xff0c;继续努力吧。 文章目录 靠谱的车灰度图恢复灰度图恢复 -- for循环使用例子 靠谱的车 https://www.nowcoder.com/discuss/564514429228834816 这个题目思路不难&#xff0c;就是要自…

网络一些相关术语

目录 网络一些相关术语 转发平面效率 可扩展性 控制平面 网络拓扑 服务质量&#xff08;QoS&#xff09; 网络协议 网络带宽 网络拥塞 网络安全 网络冗余 网络切片 网络延迟 网络地址转换&#xff08;NAT&#xff09; 虚拟专用网络&#xff08;VPN&#xff09; …

C#中的接口的使用

定义接口 public interface IMyInterface {int MyProperty { get; set; }void MyMethod(); } 实现类 internal class MyClass : IMyInterface {public int MyProperty { get; set; }public void MyMethod(){Console.WriteLine("MyMethod is called");} } 目录结构…

每天一题:洛谷P2041分裂游戏

题目描述 有一个无限大的棋盘&#xff0c;棋盘左下角有一个大小为 n 的阶梯形区域&#xff0c;其中最左下角的那个格子里有一枚棋子。你每次可以把一枚棋子“分裂”成两枚棋子&#xff0c;分别放在原位置的上边一格和右边一格。&#xff08;但如果目标位置已有棋子&#xff0c…

《人脸表情识别可解释性研究综述(计算机学报)》

文章全面综述了**人脸表情识别&#xff08;FER&#xff09;**领域的可解释性研究&#xff0c;探讨了表情识别的基本概念、技术方法和研究进展&#xff0c;并重点介绍了可解释性研究的重要性以及提高模型可解释性的方法&#xff0c;如模型的可视化和简化等。 论文内容概述&…

【智能大数据分析 | 实验四】Spark实验:Spark Streaming

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈智能大数据分析 ⌋ ⌋ ⌋ 智能大数据分析是指利用先进的技术和算法对大规模数据进行深入分析和挖掘&#xff0c;以提取有价值的信息和洞察。它结合了大数据技术、人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&a…

基于SSM考研助手系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;学生管理&#xff0c;教学秘书管理&#xff0c;考研资讯管理&#xff0c;考研名师管理&#xff0c;考研信息管理&#xff0c;系统管理 教学秘书账号功能包括&#xff1a;系统首页&#xff0c;个人中心…

如何加密电脑磁盘?电脑本地磁盘加密方法介绍

随着信息技术的不断发展&#xff0c;电脑磁盘加密已经成为保护个人隐私和数据安全的重要手段。本文将介绍几种常见的电脑本地磁盘加密方法&#xff0c;帮助用户保护自己的数据安全。 文件夹只读加密专家 文件夹只读加密专家不仅可以加密电脑中的文件夹&#xff0c;还可以加密保…

JMeter快速入门示例

JMeter是一款开源的性能测试工具&#xff0c;常用于对Web服务和接口进行性能测试。 下载安装 官方下载网址&#xff1a; https://jmeter.apache.org/download_jmeter.cgi也可以到如下地址下载&#xff1a;https://download.csdn.net/download/oscar999/89910834 这里下载Wi…

docker run 命令解析

docker run 命令解析 docker run 命令用于从给定的镜像启动一个新的容器。这个命令可以包含许多选项&#xff0c;下面是一些常用的选项&#xff1a; -d&#xff1a;后台运行容器&#xff0c;并返回容器ID&#xff1b;-i&#xff1a;以交互模式运行容器&#xff0c;通常与 -t …