pytorch训练和使用resnet
使用 CIFAR-10数据集
训练 resnet
resnet-train.py
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
# 在CIFAR-10数据集中
# 训练集:包含50000张图像,用于训练模型。
# 测试集:包含10000张图像,用于评估模型的性能。
TRAIN_SIZE=50000
TEST_SIZE=10000
# 批量大小
BATCH_SIZE=128
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载CIFAR-10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 使用预训练的ResNet模型 , 不从默认url下载预训练的模型
model = torchvision.models.resnet18(weights=None)
# 从当前路径加载预训练权重
model_path = './model/resnet18-f37072fd.pth'
model.load_state_dict(torch.load(model_path))
# 修改最后一层以适应CIFAR-10的10个类别
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
# 将模型移到GPU(如果有)
if torch.cuda.is_available() :
print('Using GPU')
device = torch.device("cuda:0")
else :
print('Using CPU')
device = torch.device("cpu")
model = model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4)
# 学习率调度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
# 训练网络
num_epochs = 50
print('start Training')
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
#总迭代次数 = 训练集大小 / 批量大小 = 向上取整(TRAIN_SIZE=50000 / BATCH_SIZE=128) = 391 次循环
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
# 梯度清零
optimizer.zero_grad()
# 前向传播 + 向后传播 + 优化
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 100 == 99: # 每100个小批量打印一次
print(f'[Epoch {epoch + 1}, Batch {i + 1}] loss: {running_loss / 100:.3f}')
running_loss = 0.0
# 更新学习率
scheduler.step()
print('Finished Training')
# 测试网络
model.eval()
correct = 0
total = 0
with torch.no_grad():
# 总迭代次数 = 测试集 / 批量大小 向上取整(TEST_SIZE=10000/BATCH_SIZE=128) = 79 次循环
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy_test = 100 * correct / total
print(f'Accuracy of the network on the 10000 test images: {accuracy_test:.2f}%')
# [Epoch 50, Batch 300] loss: 0.142
# Finished Training
# Accuracy of the network on the 10000 test images: 84.53%
# 准确率>0.8保存模型
if(accuracy_test > 0.8):
print("Accuracy > 0.8 ,save model")
model_path = './model/trained_resnet18_cifar10.pth'
torch.save(model.state_dict(), model_path)
print(f'Model saved to {model_path}')
使用训练后的 resnet
评估数据
1.jpeg :
2.jpeg:
restnet-eval.py
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
from PIL import Image
# 模型路径
model_path = './model/trained_resnet18_cifar10.pth'
# 类别标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 数据预处理
transform = transforms.Compose([
transforms.Resize((32, 32)), # 调整图像大小为32x32
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
])
# 加载预训练的ResNet模型
model = torchvision.models.resnet18(pretrained=False)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.load_state_dict(torch.load(model_path))
model.eval() # 设置模型为评估模式
# 将模型移到GPU(如果有)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def predict_image(image_path):
# 加载并预处理图像
image = Image.open(image_path).convert('RGB')
image = transform(image).unsqueeze(0) # 添加批次维度
image = image.to(device)
# 进行预测
with torch.no_grad():
outputs = model(image)
_, predicted = torch.max(outputs.data, 1)
# 输出预测结果
predicted_class = classes[predicted.item()]
print(f'Predicted class: {predicted_class}')
# img is in classes
predict_image('./data/1.jpeg')
# img is not in classes
predict_image('./data/2.jpeg')