银行客户贷款行为数据挖掘与分析

news2025/1/19 17:23:26

#1024程序员节 | 征文#

在新时代下,消费者的需求结构、内容与方式发生巨大改变,企业要想获取更多竞争优势,需要借助大数据技术持续创新。本文分析了传统商业银行面临的挑战,并基于knn、逻辑回归、人工神经网络三种算法,对银行客户的贷款需求进行分析。最后,使用KMeans聚类算法进行客群分析,绘制出雷达图、t-SNE散点图、柱状图,多方面展现客户贷款行为。

前言

1、研究背景

银行主要业务包括:资产业务、负债业务、中间业务。其中资产业务主要是指贷款业务,并且它也是银行目前主要的收入来源。同时,随着互联网金融的兴起,一些客户向线上交易方式转移,国有银行的垄断地位开始动摇,其原因主要是这些互联网金融机构利用大数据、云计算、区块链、人工智能、物联网等技术,将其应用在很多应用场景中,包括智能投研、智能投顾、智能客服、智能营销、智能风控、银行云等,这些技术的作用不只是扩大客户的融资需求,还可以用于风险控制、项目评估等方面,达到利益与风险相均衡的状态。为扭转这一局面,传统银行业开始转型升级,与互联网领域融合,优化盈利模式。

2、影响客户贷款需求的因素

客户基本信息

分析贷款客户的年龄、婚姻状况、教育水平、职业等特征,针对这些客户的特征进行分类,对每一类客户群体做出不同的营销方案。

如图1-1、1-2所示,从年龄上分析,进入银行办理业务的客户年龄大多集中在25-65岁之间,而具有贷款需求的客户的年龄分布与之相一致,同时,贷款客户占银行客户总人数的16.03%,说明贷款业务有很大的市场潜力,可以通过一些措施来激发客户的贷款需求。

import matplotlib.pyplot as plt
#设置字体
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.hist(o_data.loc[o_data['loan']=='yes','age'].values,color='red',label='y',range=(10,80),alpha=0.1)
plt.hist(o_data.loc[o_data['loan']=='no','age'].values,color='green',label='n',range=(10,80),alpha=0.1)
plt.xlabel('年龄')
plt.ylabel('人数')
plt.title('银行客户的年龄分布')
plt.legend(['y','n'])
plt.show()

图1-1 银行客户的年龄分布图

u,c=np.unique(np.array(data['loan']).astype(np.str),return_counts=True,axis=0)
#种类对应的个数
num=list(c)
#设置字体
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.pie(num,labels=['no', 'yes'],autopct='%1.2f%%') #绘制饼图,百分比保留小数点后两位
plt.title('贷款百分比饼图')
plt.show()

图1-2 贷款百分比饼图

如图1-3所示,从职业上分析,银行客户的职业大多集中在蓝领、银行人员、服务业从事人员、技术人员,而职业为蓝领的客户贷款可能性最大。

 图1-3 银行客户的职业分布图

如图1-4所示,从受教育水平上分析,大部分银行客户的受教育水平处在中等、高等教育水平,有一小部分客户的受教育水平未知。

import seaborn as sns
from matplotlib import pyplot as plt
#教育水平
fig, ax = plt.subplots(figsize=(8,6))
ax = sns.countplot(x=data.education,hue=data.loan,palette="Set1")

图1-4 客户受教育水平的分布图

如图1-5所示,从婚姻状况上分析,各种情况的人数占比都差不多,其中,已婚和离婚的客户人数较多。

dataY=data.loc[data['loan']=='yes',:]
a=round(dataY.loc[dataY['marital']=='single','marital'].count()/data.loc[data['marital']=='single','marital'].count(),2)
b=round(dataY.loc[dataY['marital']=='married','marital'].count()/data.loc[data['marital']=='married','marital'].count(),2)
c=round(dataY.loc[dataY['marital']=='divorced','marital'].count()/data.loc[data['marital']=='divorced','marital'].count(),2)
print(a,b,c)
l=[0.13,0.17,0.18]

plt.bar(['single', 'married', 'divorced'],l)
plt.xlabel('婚姻状况')
plt.ylabel('贷款人数/总人数')
plt.title('银行贷款客户的婚姻状况分布')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()

业务情况

与业务情况相关的因素,主要包括与客户的交流方式、交流次数、客户的账户平均余额,通过对这一方面的分析,可以制定出贷款方案,以更大程度的满足客户需求,同时,通过对客户交易情况的了解,将信息推送限制在一定范围内,给客户带来银行交易的愉悦感,增强与客户之间的信任。

如图1-6、1-7、1-8所示,从账户平均余额上分析,客户的贷款金额较小,大多集中在0-3000元之间,高端客户资源稀少。从与客户办理业务时的交流方式上分析,大部分客户使用手机进行信息咨询。从交流次数上分析,与客户的交流次数大多集中在1-5次之间。

plt.rcParams['font.sans-serif'] = 'SimHei'
plt.hist(data['balance'],color='blue',label='y',range=(0,15000),alpha=0.1)
plt.xlabel('账户平均余额')
plt.ylabel('人数')
plt.title('银行客户的账户平均余额分布')
plt.show()

#把异常值用均值代替
mean=round(data.iloc[:,14].describe()[1],0)
data.loc[data[:]['previous']>250,'previous']=mean
data.loc[data[:]['previous']==0,'previous']=mean
data[:]['previous']=data[:]['previous'].astype('int64')

#交流次数
dataY=data.loc[data['loan']=='yes',:]
fig, ax = plt.subplots(figsize=(10,6))
ax =sns.countplot(x='previous',data=dataY.loc[dataY['previous']<30,:],palette="Set1")

图1-8 交流次数分布图

数据预处理

1、筛选有效特征 

如图1-9、1-10所示,由于原始数据的列数过多,考虑到在构建模型阶段可能会浪费很多的时间,因此,我们用逻辑回归分析方法对数据进行筛选,删除不必要的列,最后筛选出job、material、education、balance、housing、contact、previous、loan这几列,经过评估,模型的平均正确率为0.8438。

data.corr()

data=data.loc[:,['job','marital','education','balance','housing','contact','previous','loan','age','default']]

图1-9 原始数据

图1-10 筛选后数据

2、连续型数据的处理

如图1-10所示,使用info()方法来查看每一列的数据类型,其中,balance、previous这两列属于连续型数据。这类数据的处理方法是通过绘制箱线图,查看是否存在异常值,如果存在,需要利用describe()查看该列的均值,用均值替换掉异常值。

#连续型数据的处理
import matplotlib.pyplot as plt
#设置字体
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.boxplot(data.iloc[:,3]) #绘制饼图,百分比保留小数点后两位
plt.title('账户余额箱线图')
plt.show()

#把异常值用均值代替
mean=round(data.iloc[:,3].describe()[1],0)
data.loc[data[:]['balance']>100000,'balance']=mean
data.loc[data[:]['balance']==0,'balance']=mean

3、离散型数据的处理

构造如下函数来处理离散型数据,首先要查看所在列中的值的种类数,并创建一个连续的数组,然后将该列的所有数据用数据进行替换,并将数据类型转成int64。

def replaceData(df):

    count=data[df].describe()[1]

    l=[]

    for i in range(0,count):

        l.append(str(i))

     data[df].replace(np.unique(data[df]),l,inplace=True)

     data[df]=data[df].astype('int64')
#数据离散化
l=[]
for i in range(0,10):
    l.append(str(i))
print(l)
data['job'].replace(['blue-collar', 'entrepreneur', 'housemaid', 'management',
       'retired', 'self-employed', 'services', 'student', 'technician',
       'unemployed'],l,inplace=True)
#把离散数据转成连续型
def replaceData(df):
    count=data[df].describe()[1]
    l=[]
    for i in range(0,count):
        l.append(str(i))
    data[df].replace(np.unique(data[df]),l,inplace=True)
replaceData('marital')
replaceData('education')
replaceData('default')
replaceData('housing')
replaceData('loan')
replaceData('contact')
replaceData('poutcome')

 4、处理后的数据

数据预测方法

对银行客户的贷款需求做分析,需要用到分类算法,我们将使用knn、逻辑回归分析和人工神经网络三种算法来构建模型,并对模型进行评估,计算每种算法的准确率。 

1、knn

(1)实现原理

Knn是一种基于已有样本进行推理的算法,通过对已有训练样本集和新进的未知样本做比较,找到与未知样本最相似的k个样本。最后通过对这k个样本的类标号投票得出该测试样本的类别。

(2)步骤

1.对离散数据做one-hot编码,将编码后的数据与连续型数据进行拼接,并对该数据统一做归一化处理,保证所有列对预测结果的影响程度都相同。

2.编写函数,根据测试集准确率与训练集准确率的比值,选定n-neighbors参数的值。

3.预测并得出测试集准确率与训练集准确率。通过计算得出,测试集准确率为0.8368,训练集准确率为0.8482

from sklearn.model_selection import train_test_split#导入模块
from sklearn.neighbors import KNeighborsClassifier
def ping(n):
    X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_y,test_size=0.4,random_state=2)
    knn = KNeighborsClassifier(n_neighbors=n)
    # 训练
    knn.fit(X_train,y_train)
    accuracy_train=knn.score(X_train, y_train)#评估-精确率
    accuracy_test=knn.score(X_test, y_test)#评估-精确率
    print(str(round(accuracy_test/accuracy_train,2)))
(3)评估

如图2-12-2所示,通过构建混淆矩阵的方式对模型进行评估,其中,对无贷款需求的客户判定的准确率为85%,对有贷款需求的客户判定的准确率为24%,总体准确率为84%,证明预测结果有效。

#混淆矩阵
from sklearn import metrics
metrics.accuracy_score(y_test_pre, y_test)
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(metrics.confusion_matrix(y_test_pre, y_test),
           interpolation='nearest', 
           cmap=plt.cm.binary)
plt.grid(False)
plt.colorbar()
plt.xlabel("predicted label")
plt.ylabel("true label")

#评估报告
from sklearn.metrics import classification_report
print(classification_report(y_test,y_test_pre))

from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 6))
plt.scatter(range(0,50),data.iloc[39951:,8], color='g',label='实际值',linewidth=3,alpha=0.1)
plt.scatter(range(0,50),y_train[23950:], color='r',label='预测值',linewidth=2,alpha=0.1)
plt.legend()
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('knn预测结果')
plt.show()

 

(4)预测 
import seaborn as sns
from matplotlib import pyplot as plt
fig, ax = plt.subplots(figsize=(8,6))
ax = sns.barplot(x=ndata.job,y=ndata.education,hue=ndata.knn,palette="Set1")

贷款客户主要集中在蓝领、管理者、技术人员中,且客户的教育水平普遍都很高 。

from matplotlib import pyplot as plt
plt.hist(ndata.loc[ndata['knn']==1,'balance'].values,range=(0,15000))
plt.xlabel('账户余额')
plt.ylabel('人数')
plt.title('银行贷款客户的账户余额分布')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()

2、逻辑回归

 (1)实现原理

逻辑回归是根据输入值域对记录进行分类的统计方法。它是将输入值域与输出字段每一类别的概率联系起来。一旦生成模型,便可用于预测。对于每一记录,计算其从属于每种可能输出类的概率,概率最大的类即为预测结果。

(2)步骤

1.划分测试集与训练集。

#划分自变量数据集与因变量数据集
x = data.iloc[:,[1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17]]
y = data.iloc[:,8]

2.使用RandomizedLogisticRegression筛选特征 

#使用RandomizedLogisticRegression筛选有效特征
from sklearn.linear_model import RandomizedLogisticRegression as RLR 
rlr = RLR() #建立随机逻辑回归模型,筛选变量
rlr.fit(x, y) #训练模型
rlr.get_support() #获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数
print(u'通过随机逻辑回归模型筛选特征结束。')
print(u'有效特征为:%s' % ','.join(data.columns[rlr.get_support(indices=True)]))
x = data[data.columns[rlr.get_support(indices=True)]].as_matrix()#筛选好特征
x = data.loc[:,['job','marital','education','balance','housing','contact','previous']]

 3.进行预测并计算准确率。通过计算得出,测试集准确率为0.8403,训练集准确率为0.8461

#使用筛选后的特征数据用LogisticRegression来训练模型
from sklearn.linear_model import LogisticRegression as LR
lr = LR() #建立逻辑回归模型
#训练集
x=p_data.iloc[0:24000,1:8]
y=p_data.iloc[0:24000,8]
#测试集
x1=p_data.iloc[24000:,1:8]
y1=p_data.iloc[24000:,8]
lr.fit(x, y) #训练数据
r=lr.score(x, y); # 模型准确率(针对训练数据)
#训练集的预测准确率
trainR=lr.predict(x)
trainZ=trainR-y
trainRs=len(trainZ[trainZ==0])/len(trainZ)
print('训练集的预测准确率为:',trainRs)
#测试集的预测准确率
R=lr.predict(x1)
Z=R-y1
Rs=len(Z[Z==0])/len(Z)
print('测试集的预测准确率为:',Rs)
(3)评估

如图2-32-4所示,通过构建混淆矩阵的方式对模型进行评估,其中,对无贷款需求的客户判定的准确率为84%,召回率100%;对有贷款需求的客户判定的准确率为0%,总体准确率为84%

from sklearn import metrics
metrics.accuracy_score(R, y1)
import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(metrics.confusion_matrix(R, y1),
           interpolation='nearest', 
           cmap=plt.cm.binary)
plt.grid(False)
plt.colorbar()
plt.xlabel("predicted label")
plt.ylabel("true label")

3、人工神经网络

(1)实现原理

在人工神经网络算法中,对损失函数用梯度下降法进行迭代优化求极小值的过程使用的是BP算法。BP算法由信号的正向传播和误差的反向传播构成。首先,将信号从输入层传递至输出层。若实际输出与期望输出不一致,则进入误差反向传播阶段,将误差反向传递,获得各层的误差信号,对误差做调整。通过反复执行信号的正向传播和误差的反向传播操作,直至输出误差达到期望值,或进行到预定的学习次数为止。

(2)步骤

1.对离散数据做one-hot编码,将编码后的数据与连续型数据进行拼接,并对该数据统一做归一化处理,保证所有列对预测结果的影响程度都相同。

2.划分训练集和测试集。

#分离训练集与测试集,median_house_value列的数据是研究的目标
from sklearn.model_selection import train_test_split
Train_X,Test_X,Train_y,Test_y=train_test_split(x,y,
                                              test_size=0.4,random_state=2)

3.采用GridSearchCV来进行参数调整实验,对solverhidden_layer_sizes两个参数的值进行调整,找出最佳参数组合。

4.预测并计算准确率。通过计算得出,测试集准确率为0.9997,训练集准确率为0.9998

#采用GridSearchCV来进行参数调整实验,找出最佳参数组合
from sklearn.model_selection import GridSearchCV
from sklearn.neural_network import MLPRegressor 
param_grid = {'solver':['lbfgs','sgd','adam'],
 'hidden_layer_sizes': [(5,5),(10,10)]
             }
#对param_grid中的各参数进行组合,传递进MPL回归器。
#cv=3,3折交叉验证,将数据集随机分为3份,每次将一份作为测试集,其他为训练集
#n_jobs=-1,使用CPU核心数,-1表示所有可用的核
best_mlp =GridSearchCV(MLPRegressor(max_iter=200),param_grid,cv=3)
best_mlp.fit(Train_X,Train_y)
print('当前最佳参数组合:',best_mlp.best_params_)
best_score=best_mlp.score(Test_X,Test_y)*100
print('sklearn人工神经网络上述参数得分: %.1f' %best_score + '%')
#用以上模型对Test_X进行预测
mlp_pred = best_mlp.predict(Test_X)
(3)评估 
accuracy_train=best_mlp.score(Train_X,Train_y)#评估-精确率
accuracy_test=best_mlp.score(Test_X,Test_y)#评估-精确率
print('训练集精确率:'+str(accuracy_train)+' 测试集:'+str(accuracy_test))

 三种算法之间的比较

(1)逻辑回归:该算法的数据处理过程较为简单,并且在构建模型的时候不能输入参数进行设置,因此需要手动划分训练集和测试集。

2)人工神经网络:该算法内部带有很多方法,可以对数据进行one-hot编码、归一化等处理,排除特殊数值对结果的影响,还能进行参数调整,找到最佳参数组合,因此,在这三种算法中,人工神经网络算法的拟合度最高。

3Knn:在预测前需要对数据进行处理,排除特殊数值对结果的影响,同时,该算法在构建模型的过程中可以指定参数,尤其是n-neighbors,这个需要我们自行编写方法来找到n-neighbors的最佳值。

from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 6))
plt.plot(range(0,50),data.iloc[39951:,8], 'go--',label='实际值',linewidth=1)
plt.plot(range(0,50),f_data1.iloc[:,1], 'y--',label='逻辑分析',linewidth=2)
plt.plot(range(0,50),f_data1.iloc[:,2], 'r:',label='knn',linewidth=2)
plt.plot(range(0,50),f_data1.iloc[:,3], 'b',label='sklearn',linewidth=2,alpha=0.5)
plt.legend()
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.title('三种算法预测结果')
plt.show()

KMeans聚类客群分析

1、将每个特征值归一化到一个固定范围  

from sklearn import preprocessing
x=data.iloc[:,[1,3,4,5,6,7]]
x= preprocessing.MinMaxScaler(feature_range=(0,1)).fit_transform(x)#将每个特征值归一化到一个固定范围  

2、开始聚类

from sklearn.cluster import KMeans
import numpy as np
#model = KMeans(init=np.array([[4,5],[5,5]]),n_clusters = k, n_jobs = 4, max_iter = iteration) #分为k类,并发数4
model = KMeans(n_clusters = 4,max_iter = 200) #分为k类,并发数4
model.fit(x) #开始聚类

3、预测并绘图

(1)雷达图
coreData=np.array(model.cluster_centers_)
ydata0 = np.concatenate((coreData[0], [coreData[0][0]]))
ydata1 = np.concatenate((coreData[1], [coreData[1][0]]))
ydata2 = np.concatenate((coreData[2], [coreData[2][0]]))
ydata3 = np.concatenate((coreData[3], [coreData[3][0]]))

xdata = np.linspace(0,2*np.pi,6,endpoint=False)
xdata = np.concatenate((xdata,[xdata[0]]))
from matplotlib import pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111,polar=True)  #111表示“1×1网格,第一子图”
ax.plot(xdata, ydata0, 'ro--', linewidth=1.2, label='A组客户')
ax.plot(xdata, ydata1, 'b^--', linewidth=1.2, label='B组客户')
ax.plot(xdata, ydata2, 'y*--', linewidth=1.2, label='C组客户')
ax.plot(xdata, ydata2, 'g+-', linewidth=1.2, label='D组客户')
# ax.plot(xdata, ydata3, 'go--', linewidth=1.2, label='D组客户')
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 解决负号“-”显示异常
ax.set_thetagrids(xdata * 180 / np.pi, ['job ', 'education', 'balance', 'housing', 'contact','previous'])  # 有六个值,将一个圆分为六块
ax.set_rlim(-4, 13)  # 轴值范围,圆点是-4,最外层是13
plt.legend(loc=4)
plt.show()

#简单打印结果
r1 = pd.Series(model.labels_).value_counts() #统计各个类别的数目
r2 = pd.DataFrame(model.cluster_centers_) #找出聚类中心
r = pd.concat([r2, r1], axis = 1) #横向连接(0是纵向),得到聚类中心对应的类别下的数目
r.columns =  ['job ', 'education', 'balance', 'housing', 'contact','previous'] + [u'kind'] #重命名表头

 (2)t-SNE散点图
from sklearn.manifold import TSNE
t=TSNE()
t.fit_transform(x)
t=pd.DataFrame(t.embedding_)

d=t[r[u'kind']==0]
plt.scatter(d[0],d[1],color='r')
d=t[r[u'kind']==1]
plt.scatter(d[0],d[1],color='b')
d=t[r[u'kind']==2]
plt.scatter(d[0],d[1],color='y')
# d=t[r[u'聚类类别']==3]
# plt.scatter(d[0],d[1],color='g')
plt.show()

(3)柱状图
import seaborn as sns
sns.countplot(x='job',color='salmon',data=r,hue='kind')

from matplotlib import pyplot as plt
l=[1415.26, 1599.9, 1661.7, 1056.26]
plt.bar(['客群1','客群2','客群3','客群4'],l)
plt.xlabel('客群种类')
plt.ylabel('账户余额')
plt.title('银行贷款客户的账户余额分布')
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.show()

sns.barplot(x='contact',y='education',color='salmon',data=r,hue='kind')

结论

如图2-5所示,在这三种算法中,人工神经网络算法的拟合度最高。通过模型评估发现,每个算法对于无贷款需求的判定准确率较高,而对于有贷款需求的判定准确率较低

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2221528.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【在Linux世界中追寻伟大的One Piece】Socket编程UDP

目录 1 -> UDP网络编程 1.1 -> V1版本 -echo server 1.2 -> V2版本 -DictServer 1.3 -> V2版本 -DictServer(封装版) 1 -> UDP网络编程 1.1 -> V1版本 -echo server 简单的回显服务器和客户端代码。 备注&#xff1a;代码中会用到地址转换函数。 noc…

Java面试题库——多线程

1.并行和并发有什么区别&#xff1f; 并行&#xff1a;是指两个或多个事件在同一时刻发生&#xff0c;是在不同实体上的多个事件&#xff1b; 并发&#xff1a;是指两个或多个事件在同一时间间隔发生&#xff0c;是同一实体上的多个事件。2.线程和进程的区别&#xff1f; 根本…

数据结构修炼——常见的排序算法:插入/希尔/选择/堆排/冒泡/快排/归并/计数

目录 一、常见的排序算法二、常见排序算法的实现2.1 排序算法回顾2.1.1 冒泡排序2.1.2 堆排序 2.2 直接插入排序2.3 希尔排序2.4 选择排序2.5 快速排序2.5.1 快速排序&#xff08;霍尔法&#xff09;2.5.2 快速排序&#xff08;挖坑法&#xff09;2.5.3 快速排序&#xff08;前…

极客wordpress模板

这是一个展示WordPress主题的网页设计。页面顶部有一个导航栏&#xff0c;包含多个选项&#xff0c;如“关于我们”、“产品中心”、“案例展示”、“新闻动态”、“联系我们”和“技术支持”。页面中间部分展示了多个产品&#xff0c;每个产品都有一个图片和简短的描述。页面下…

【Linux】冯诺依曼体系结构 OS的概念

&#x1fa90;&#x1fa90;&#x1fa90;欢迎来到程序员餐厅&#x1f4ab;&#x1f4ab;&#x1f4ab; 主厨&#xff1a;邪王真眼 主厨的主页&#xff1a;Chef‘s blog 所属专栏&#xff1a;青果大战linux 总有光环在陨落&#xff0c;总有新星在闪烁 前言废话&#xff1a…

动态链接过程分析

目录 一、前言二、示例程序三、动态库的加载过程1、动态链接器加载动态库2、动态库的加载地址 四、符号重定位1、全局符号表2、全局偏移表 GOT3、liba.so 动态库文件的布局4、liba.so 动态库的虚拟地址5、GOT 表的内部结构6、反汇编 liba.so 代码 五、补充1、延迟绑定 plt 上文…

【ARM】ARM架构参考手册_Part B 内存和系统架构(5)

目录 5.1关于缓存和写缓冲区 5.2 Cache 组织 5.2.1 集联性&#xff08;Set-associativity&#xff09; 5.2.2 缓存大小 5.3 缓存类型 5.3.1 统一缓存或分离缓存 5.3.2 写通过&#xff08;Write-through&#xff09;或写回&#xff08;Write-back&#xff09;缓存 5.3.3…

基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析

随机森林作为一种集成学习方法&#xff0c;在处理复杂数据分析任务中特别是遥感数据分析中表现出色。通过构建大量的决策树并引入随机性&#xff0c;随机森林在降低模型方差和过拟合风险方面具有显著优势。在训练过程中&#xff0c;使用Bootstrap抽样生成不同的训练集&#xff…

Linux环境配置(学生适用)

1.挑选最便宜的云服务器 如腾讯云服务器&#xff0c;华为云服务器&#xff0c;百度云服务器等等…… 2.找到你的云服务器实例&#xff0c;然后找到你的公网IP。 3.云服务器实例 ---更多 --- 重置root密码 (一定要重置&#xff09; 4. 下载并安装 xshell 或者其他登陆软件 xshel…

12. 命令行

Hyperf 的命令行默认由 hyperf/command 组件提供&#xff0c;而该组件本身也是基于 symfony/console 的抽象。 一、安装 通常来说该组件会默认存在&#xff0c;但如果您希望用于非 Hyperf 项目&#xff0c;也可通过下面的命令依赖 hyperf/command 组件。 composer require hype…

告别ELK,APO提供基于ClickHouse开箱即用的高效日志方案——APO 0.6.0发布

ELK一直是日志领域的主流产品&#xff0c;但是ElasticSearch的成本很高&#xff0c;查询效果随着数据量的增加越来越慢。业界已经有很多公司&#xff0c;比如滴滴、B站、Uber、Cloudflare都已经使用ClickHose作为ElasticSearch的替代品&#xff0c;都取得了不错的效果&#xff…

【Golang】Go语言中如何创建Cron定时任务

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

MySQL【知识改变命运】11

联合查询 6. ⼦查询6.1 语法6.2 单⾏⼦查询6.3 多⾏⼦查询6.4 多列⼦查询6.5 在from⼦句中使⽤⼦查询 7. 合并查询7.1 创建新表并初始化数据7.2 Union7.3 Union all 8. 插⼊查询结果8.1 语法8.2 ⽰例 6. ⼦查询 ⼦查询是把⼀个SELECT语句的结果当做别⼀个SELECT语句的条件&…

10.22 MySQL

存储过程 存储函数 存储函数是有返回值的存储过程&#xff0c;存储函数的参数只能是in类型的。具体语法如下&#xff1a; characteristic 特性 练习&#xff1a; 从1到n的累加 ​​​​​​ create function fun1(n int) returns int deterministic begindeclare total i…

制氮机分子筛的作用

制氮机作为一种重要的工业设备&#xff0c;广泛应用于食品、饮料、化学、石油、电子和医疗保健等多个行业。其核心组件之一——分子筛。本文将详细探讨制氮机分子筛的作用及其重要性。 一、分子筛的基本概念 分子筛是一种具有均匀孔径的多孔材料&#xff0c;常用于气体分离和纯…

Elasticsearch 中的高效按位匹配

作者&#xff1a;来自 Elastic Alexander Marquardt 探索在 Elasticsearch 中编码和匹配二进制数据的六种方法&#xff0c;包括术语编码&#xff08;我喜欢的方法&#xff09;、布尔编码、稀疏位位置编码、具有精确匹配的整数编码、具有脚本按位匹配的整数编码以及使用 ESQL 进…

基于vue框架的的二手车交易系统的设计与实现thx7v(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能&#xff1a;用户,卖家,车辆类型,二手车,在线留言,订单信息 开题报告内容 基于Vue框架的二手车交易系统的设计与实现开题报告 一、课题背景及意义 随着汽车消费市场的日益成熟与消费者换车频率的增加&#xff0c;二手车交易市场逐渐成为汽车市场的…

pycharm配置git版本控制

今天记录一下如何在pycharm工具中配置git版本控制&#xff0c;主要分以下步骤&#xff1a; 1、安装git 首先需要有git环境&#xff0c;去git官网下载git安装包&#xff0c;下一步下一步执行安装完成即可 2、在pycharm中配置git路径 下载git后&#xff0c;在pycharm的 setti…

「AIGC」n8n AI Agent开源的工作流自动化工具

n8n AI Agent 是一个利用大型语言模型(LLMs)来设计和构建智能体(agents)的工具,这些智能体能够执行一系列复杂的任务,如理解指令、模仿类人推理,以及从用户命令中理解隐含意图。n8n AI Agent 的核心在于构建一系列提示(prompts),使 LLM 能够模拟自主行为。 传送门→ …

GAMES104:17 游戏引擎的玩法系统:高级AI-学习笔记

文章目录 课前QA一&#xff0c;层次任务网络&#xff08;Hierarchical Tasks Network&#xff0c;HTN&#xff09;1.1 HTN Framework1.2 HTN Task Types1.2.1 Primitive Task基本任务1.2.2 Compound Task符合任务 1.3 Planning1.4 Replan1.5 总结 二&#xff0c;目标导向行为规…