告别ELK,APO提供基于ClickHouse开箱即用的高效日志方案——APO 0.6.0发布

news2025/1/19 19:22:27

ELK一直是日志领域的主流产品,但是ElasticSearch的成本很高,查询效果随着数据量的增加越来越慢。业界已经有很多公司,比如滴滴、B站、Uber、Cloudflare都已经使用ClickHose作为ElasticSearch的替代品,都取得了不错的效果,实现了降本增效,费用节约大多在50%以上。但是目前使用ClickHose作为日志方案,存在以下问题。

  • 主流的Vector+ClickHose并未实现开箱即用,有许多的管理配置工作
  • 绝大多数方案不支持近似全文检索的功能(该功能很重要)
  • 使用双数组或者Map的表结构查询效率不高
  • ClickVisual是最接近的开箱即用的日志方案,也存在以下问题:

○强依赖Kafka,对于某些中小用户而言方案不够灵活,不友好

○未引入Vector,原生的ClickHose Kafka引擎在大流量情况下可能导致ClickHose内存爆掉(感谢社区大佬 十四反馈)

主流的Vector+ClickHouse方案并未实现开箱即用

目前业界很多公司都是基于Vector+ClickHouse的方案来实现日志的采集和存储,该方案需要管理维护的工作量相对而言比较高,适用于动手能力强的公司。

维护工作:为每种日志手动维护一张表

每个公司的部门团队可能日志规范都不完全一致,如果需要对日志内容进行快速搜索定位故障,就需要提前想好ClickHouse的表结构,然后调整Vector的配置文件,最终实现Vector根据不同日志格式,parse成不同的日志表字段,写入不同的日志表。

比如每种日志都得建立以下类似的表结构,才能完成日志按照ip、url等字段的索引实现快速搜索。但是另外一个部门的日志也许就不需要IP和url字段,那么该部门得重新设计表结构。

CREATE TABLE log
(
    `ip` String,
    `time` Datetime,
    `url` String,
    `status` UInt8,
    `size` UInt32,
    `agent` String
)
ENGINE = MergeTree
ORDER BY date(time)

使用双数组或者Map的表结构查询效率不高

为了能够规避这些维护工作,所以很多公司对固定日志表结构进行了调整,常见的有两种方案,一种是双数组方案,另外一种就是Map方案。

Uber和Signoz的日志实现方案都是基于双数组

其日志表结构类似于下面这种

CREATE TABLE <table_name>
(
      //Common metadata fields.
      _namespace             String,
      _timestamp              Int64,
      hostname               String,
      zone                   String,
      ...

     //Raw log event.
     _source                 String,

    //Type-specific field names and field values.
    string.names             Array(String),
    string.values            Array(String),
    number.names             Array(String), 
    number.values            Array(Float64),
    bool.names               Array(String),
    bool.values              Array(UInt8),

    //Materialized fields
    bar.String,              String
    foo.Number               Float64,
   ...
)
...

滴滴、B站等日志实现是基于Map结构

引入Map结构能够动态实现日志关键字段搜索

CREATE TABLE ck_bamai_stream.cn_bmauto_local
(
    `logTime` Int64 DEFAULT 0, --Log打印的时间
    `logTimeHour` DateTime MATERIALIZED toStartOfHour(toDateTime(logTime / 1000)),--将Log
    `odinLeaf` String DEFAULT '',
    `uri` LowCardinality(String) DEFAULT '',
    `traceid` string DEFAULT '',
    `cspanid` String DEFAULT '',
    `dltag` String DEFAULT '',
    `spanid` String DEFAULT '',
    `message` String DEFAULT '',
    `otherColumn` Map<String,String>
    `_sys_insert_time` DateTime MATERIALIZED now()
)
ENGINE =MergeTree
PARTITION BY toYYYYMMDD(logTimeHour)
ORDER BY(logTimeHour,odinLeaf,uri,traceid)
TTL _sys_insert_time +toIntervalDay(7),_sys_insert_time + toIntervalDay(3)To VOLUME 'hdfs
SETTINGS index_granularity = 8192,min_bytes_for_wide_part=31457280
Create Table <log_app_name> ON CLUSTER ...
{
     _timestamp      Datetime64(3),
     `log,level`     String CODC(ZSTD(1)),
     `log.msg`       String CODC(ZSTD(1)),
     `log.trace_id`  String CODC(ZSTD(1)),
     ...
     string_map MapV2(String, Nullable(String))
        CODEC(ZSTD(1))
     number_map MapV2(String, Nullable(Float64))
        CODEC(ZSTD(1))
     bool_map MapV2(String, Nullable(UInt8))
}
ENGIN = ReplicatedMergeTree(...)
PARTITION BY toYYYYMMDD(_timestamp)
ORDER BY timestamp
TTL  toDateTime(timestamp) + toIntervalDay(...),
  toDateTime(timestamp) + toIntervalDay(...) TO VOLUME `cold_volume`

Map的动态字段搜索效率低

https://clickhouse.ac.cn/docs/knowledgebase/improve-map-performance

根据社区反馈,map底层实现为线性数组,map查询效率通常低于列查询3~10倍,特别是日志量规模越大,map查询效率越低。

同时支持Map类型的最低clickhosue版本为21.11

  • 列式存储优势:
    ClickHouse 的核心优势在于它是列式存储数据库,这意味着当执行查询时,只需要读取查询中涉及的列,而不必加载不相关的列。列式存储还能够通过数据类型特定的压缩技术显著减少 IO 操作,从而加快查询速度

  • 基于 Map 的查询:
    Map 是一种键值对数据结构,在查询时需要额外的开销来解析嵌套结构,并且无法像列式存储那样直接跳过不相关的数据。虽然 ClickHouse 对 Map 数据类型有一些优化,但它在处理复杂结构时往往会比简单的列查询慢

双数组的搜索效率也不高

虽然 ClickHouse 对Array有一定的优化,但双数组结构仍然比单纯的列查询开销大。

影响性能的因素:

  • 多级解析开销:查询双数组时,需要进行多层嵌套解析。例如,访问数组中的子数组意味着需要遍历父数组,然后进一步解析子数组的结构,这比单纯读取一个列复杂得多
  • 随机存取:双数组的访问模式往往比简单的列查询更加随机化。访问数组中的元素可能导致更多的跳转,影响缓存命中率,从而降低性能
  • 内存使用和数据存储:嵌套数组会使得 ClickHouse 的数据存储和内存管理更加复杂,因为数组中的数据长度不固定,导致压缩效果比单纯列差,数据块的大小也更加难以优化

性能上的差距取决于具体的查询模式和数据结构:

  • 在简单查询场景(例如,读取一个基本的列数据),单纯的列查询会比双数组快得多,特别是在处理大规模数据时。性能差距可能达到 数倍甚至十倍 以上,尤其是当查询不涉及嵌套结构时。
  • 在复杂查询场景(例如,查询涉及嵌套数组、需要频繁地进行数组拆解和操作),双数组的查询性能通常明显低于单纯的列查询。查询双数组的额外解析和处理开销,会使查询时间增加。根据不同的嵌套深度和数据量,性能可能下降 数倍。

ClickHouse的官方文档中日志方案也由于引入了Map效率不高

ClickHouse官方blog :

https://ClickHouse.com/blog/storing-log-data-in-ClickHouse-fluent-bit-vector-open-telemetry

提到有以下几种表结构:

OTEL的日志字段表

CREATE TABLE otel.otel_logs
(
    `Timestamp` DateTime64(9) CODEC(Delta(8), ZSTD(1)),
    `TraceId` String CODEC(ZSTD(1)),
    `SpanId` String CODEC(ZSTD(1)),
    `TraceFlags` UInt32 CODEC(ZSTD(1)),
    `SeverityText` LowCardinality(String) CODEC(ZSTD(1)),
    `SeverityNumber` Int32 CODEC(ZSTD(1)),
    `ServiceName` LowCardinality(String) CODEC(ZSTD(1)),
    `Body` String CODEC(ZSTD(1)),
    `ResourceAttributes` Map(LowCardinality(String), String) CODEC(ZSTD(1)),
    `LogAttributes` Map(LowCardinality(String), String) CODEC(ZSTD(1)),
    //数据索引
    INDEX idx_trace_id TraceId TYPE bloom_filter(0.001) GRANULARITY 1,
    INDEX idx_res_attr_key mapKeys(ResourceAttributes) TYPE bloom_filter(0.01) GRANULARITY 1,
    INDEX idx_res_attr_value mapValues(ResourceAttributes) TYPE bloom_filter(0.01) GRANULARITY 1,
    INDEX idx_log_attr_key mapKeys(LogAttributes) TYPE bloom_filter(0.01) GRANULARITY 1,
    INDEX idx_log_attr_value mapValues(LogAttributes) TYPE bloom_filter(0.01) GRANULARITY 1,
    INDEX idx_body Body TYPE tokenbf_v1(32768, 3, 0) GRANULARITY 1
)
ENGINE = MergeTree
PARTITION BY toDate(Timestamp)
ORDER BY (ServiceName, SeverityText, toUnixTimestamp(Timestamp), TraceId)
SETTINGS index_granularity = 8192, ttl_only_drop_parts = 1

Vector 字段表

CREATE TABLE vector.vector_logs
(
   `file` String,
   `timestamp` DateTime64(3),
   `kubernetes_container_id` LowCardinality(String),
   `kubernetes_container_image` LowCardinality(String),
   `kubernetes_container_name` LowCardinality(String),
   `kubernetes_namespace_labels`  Map(LowCardinality(String), String),
   `kubernetes_pod_annotations`  Map(LowCardinality(String), String),
   `kubernetes_pod_ip` IPv4,
   `kubernetes_pod_ips` Array(IPv4),
   `kubernetes_pod_labels` Map(LowCardinality(String), String),
   `kubernetes_pod_name` LowCardinality(String),
   `kubernetes_pod_namespace` LowCardinality(String),
   `kubernetes_pod_node_name` LowCardinality(String),
   `kubernetes_pod_owner` LowCardinality(String),
   `kubernetes_pod_uid` LowCardinality(String),
   `message` String,
   `source_type` LowCardinality(String),
   `stream` Enum('stdout', 'stderr')
)
ENGINE = MergeTree
ORDER BY (`kubernetes_container_name`, timestamp)

fluent字段表

CREATE TABLE fluent.fluent_logs
(
    `timestamp` DateTime64(9),
    `log` String,
    `kubernetes` Map(LowCardinality(String), String),
    `host` LowCardinality(String),
    `pod_name` LowCardinality(String),
    `stream` LowCardinality(String),
    `labels` Map(LowCardinality(String), String),
    `annotations` Map(LowCardinality(String), String)
)
ENGINE = MergeTree
ORDER BY (host, pod_name, timestamp)

日志需要近似全文检索

基于ElasticSearch的日志方案,由于可以基于ElasticSearch实现的日志内容分词,所以很容易实现全文检索,但是基于ClickHouse就很难实现该功能。

那是不是基于ClickHouse的方案就完全没有办法呢?

ClickHouse的索引介绍

  • tokenbf_v1 按非字母数字字符(non-alphanumeric)拆分。相当于按符号分词,而通常日志中会有大量符号

在大牛的文章中,

https://juejin.cn/post/7130514546069864456

详细介绍了全文检索的实现,有兴趣的可以仔细看下大牛的文章。

最理想的日志方案应该满足什么条件?

我们认为理想的基于ClickHouse的日志方案应该满足以下几条:

  • 使用列来进行检索,而不是map或者双array,保证高效的查询效率
  • 用户不需要为了不同部门的日志内容,进行维护单独的表结构
  • 支持对原始日志内容进行近似的全文检索

我们调研了国内外几乎所有基于ClickHouse的日志方案,最后发现国内开源项目ClickVisual项目的思路最相近,ClickVisual几乎可以做到开箱即用。


ClickVisual的方案不足

ClickVisual工作原理:

  • 针对每种日志格式定义不同的parse规则,ClickVisual为每种规则生成一张新的日志表。该日志表存的就是解析之后的日志,之后的日志查询都是针对该日志表。因为解析之后的日志已经按照ClickHouse列存储了,所以关键字段查询是非常快的
  • 基于Kafka表引擎,读取Kafka原始日志,落库至临时表中
  • 魔术开始的地方:
    基于ClickHouse的物化视图,将原始日志中的新增日志_raw_log_内容按照日志解析规则parse成日志列格式,并将解析好的日志存入该规则对应的日志表中

临时表

CREATE TABLE default.test_stream
(
    `status` String,
    `timestamp` Float64,
    `message` String CODEC(ZSTD(1))
)
ENGINE = Kafka
SETTINGS kafka_broker_list = '127.0.0.1:9092',
kafka_topic_list = 'test',
kafka_group_name = 'default_test',
kafka_format = 'JSONEachRow', 
kafka_num_consumers = 1,
kafka_skip_broken_messages = 0

物化视图

CREATE MATERIALIZED VIEW default.test_view TO default.test
(
    `status` String,
    `_time_second_` DateTime,
    `_time_nanosecond_` DateTime64(9),
    `_raw_log_` String,
    // 日志表的列
    `level` Nullable(String)
    //根据需要调整列
    ...
) AS
SELECT
    status,
    toDateTime(toInt64(timestamp)) AS _time_second_,
    fromUnixTimestamp64Nano(toInt64(timestamp * 1000000000)) AS _time_nanosecond_,
    message AS _raw_log_,
    // 物化视图处理成列
    toNullable(toString(replaceAll(JSONExtractRaw(message, 'level'), '"', ''))) AS level
    // 根据需要添加更多解析规则
    ...
FROM default.test_stream
WHERE 1 = 1

按照日志解析规则将_raw_log_parse成新的真实日志表

CREATE TABLE default.test
(
    `status` String,
    `_time_second_` DateTime,
    `_time_nanosecond_` DateTime64(9),
    `_raw_log_` String CODEC(ZSTD(1)),
    // 该列通过物化视图解析得到
    `level` Nullable(String),
    // 根据需要添加更多列
    ...
    INDEX idx_raw_log _raw_log_ TYPE tokenbf_v1(30720, 2, 0) GRANULARITY 1
)
ENGINE = MergeTree
PARTITION BY toYYYYMMDD(_time_second_)
ORDER BY _time_second_
TTL toDateTime(_time_second_) + toIntervalDay(1)
SETTINGS index_granularity = 8192

每当需要分析新的索引字段,clickvisual会执行Add Colum为日志表添加新的列,同时更新物化视图添加新的解析处理规则。

ClickVisual的不足:

根据上述的原理:

  • 不支持高效的近似全文检索,工作原理可以看出由于ClickVisual并未对_raw_log_进行跳数索引,所以也就导致ClickVisual不能高效的支持近似的对原始日志全文检索
  • 由于ClickVisual完全依赖Kafka表引擎来实现日志的摄入,虽然ClickVisual也支持引入ClickHouse的已有日志表结构进行查询,但是很可能并不是直接针对列查询,而是针对map数据查询,只有通过Kafka引擎来摄入的日志才能生成新日志表结构,最终查询才是针对列式查询,才能有较高的查询效率
  • Kafka表引擎读写日志速度无法控制,如果日志量非常多,导致ClickHouse物化视图工作过程中内存爆掉

APO 日志设计方案

ClickVisual已经非常接近理想日志方案了,只是我们需要对ClickVisual的逻辑进行调整。

  1. 不使用ClickHouse的Kafka表引擎来完成日志的摄取工作,而是改成Vector的方式完成日志的摄取工作。这样就不再依赖Kafka,对于中小用户日志规模没有那么大的用户,可以直接使用,而不需要维护Kafka。虽然去掉了Kakfa,同时增加了Vector,但是Vector的运维工作相比kafka而言,Vector几乎不需要运维
  2. 引入了Vector之后,可以通过配置Vector来调整参数,确保在大量日志洪锋的时候,也不至于将ClickHouse内存打爆
  3. 用户如果真的需要引入Kafka,也有已经维护好的Kafka,完全可以使用Vector先将原始日志写入Kafka,然后使用Vector从Kafka读取出来,继续实现后续的日志处理
  4. APO引入了ClickHouse null表引擎,来实现原始日志(从Vector写入的) 转换成按照日志解析格式解析之后的真实日志表。
  5. 所有的查询都是针对真实日志表的列查询,所以性能比较高
  6. 在真实日志表中,额外存储了_raw_log_,配合跳数索引完成 近似日志全文检索。

欢迎使用APO全量日志功能
在这里插入图片描述


APO v0.6.0更新日志:

新增功能

  • 支持全量日志的采集、处理与展示功能

缺陷修复

  • 修复服务端点存在特殊字符时,无法获取到依赖延时曲线的问题
  • 修复无故障场景下频繁采集故障现场数据的问题
  • 修复部分场景下数据库调用无指标的问题
  • 修复传统服务器场景下,网络质量状态无法关联到告警的问题
  • 修复传统服务器场景下,OneAgent配置注入失败的问题

其他

  • 允许在创建 ClickHouse 表时选择是否创建副本
  • 向下兼容 ClickHouse 版本,当前支持最低版本为 22.8.x

APO介绍:

国内开源首个 OpenTelemetry 结合 eBPF 的向导式可观测性产品

apo.kindlingx.com

https://github.com/CloudDetail/apo

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2221511.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Golang】Go语言中如何创建Cron定时任务

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

MySQL【知识改变命运】11

联合查询 6. ⼦查询6.1 语法6.2 单⾏⼦查询6.3 多⾏⼦查询6.4 多列⼦查询6.5 在from⼦句中使⽤⼦查询 7. 合并查询7.1 创建新表并初始化数据7.2 Union7.3 Union all 8. 插⼊查询结果8.1 语法8.2 ⽰例 6. ⼦查询 ⼦查询是把⼀个SELECT语句的结果当做别⼀个SELECT语句的条件&…

10.22 MySQL

存储过程 存储函数 存储函数是有返回值的存储过程&#xff0c;存储函数的参数只能是in类型的。具体语法如下&#xff1a; characteristic 特性 练习&#xff1a; 从1到n的累加 ​​​​​​ create function fun1(n int) returns int deterministic begindeclare total i…

制氮机分子筛的作用

制氮机作为一种重要的工业设备&#xff0c;广泛应用于食品、饮料、化学、石油、电子和医疗保健等多个行业。其核心组件之一——分子筛。本文将详细探讨制氮机分子筛的作用及其重要性。 一、分子筛的基本概念 分子筛是一种具有均匀孔径的多孔材料&#xff0c;常用于气体分离和纯…

Elasticsearch 中的高效按位匹配

作者&#xff1a;来自 Elastic Alexander Marquardt 探索在 Elasticsearch 中编码和匹配二进制数据的六种方法&#xff0c;包括术语编码&#xff08;我喜欢的方法&#xff09;、布尔编码、稀疏位位置编码、具有精确匹配的整数编码、具有脚本按位匹配的整数编码以及使用 ESQL 进…

基于vue框架的的二手车交易系统的设计与实现thx7v(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能&#xff1a;用户,卖家,车辆类型,二手车,在线留言,订单信息 开题报告内容 基于Vue框架的二手车交易系统的设计与实现开题报告 一、课题背景及意义 随着汽车消费市场的日益成熟与消费者换车频率的增加&#xff0c;二手车交易市场逐渐成为汽车市场的…

pycharm配置git版本控制

今天记录一下如何在pycharm工具中配置git版本控制&#xff0c;主要分以下步骤&#xff1a; 1、安装git 首先需要有git环境&#xff0c;去git官网下载git安装包&#xff0c;下一步下一步执行安装完成即可 2、在pycharm中配置git路径 下载git后&#xff0c;在pycharm的 setti…

「AIGC」n8n AI Agent开源的工作流自动化工具

n8n AI Agent 是一个利用大型语言模型(LLMs)来设计和构建智能体(agents)的工具,这些智能体能够执行一系列复杂的任务,如理解指令、模仿类人推理,以及从用户命令中理解隐含意图。n8n AI Agent 的核心在于构建一系列提示(prompts),使 LLM 能够模拟自主行为。 传送门→ …

GAMES104:17 游戏引擎的玩法系统:高级AI-学习笔记

文章目录 课前QA一&#xff0c;层次任务网络&#xff08;Hierarchical Tasks Network&#xff0c;HTN&#xff09;1.1 HTN Framework1.2 HTN Task Types1.2.1 Primitive Task基本任务1.2.2 Compound Task符合任务 1.3 Planning1.4 Replan1.5 总结 二&#xff0c;目标导向行为规…

在ECS实例上搭建WordPress博客平台

WordPress是使用PHP语言开发的博客平台&#xff0c;在支持PHP和MySQL数据库的服务器上&#xff0c;您可以用WordPress搭建自己的网站&#xff0c;也可以用作内容管理系统&#xff08;CMS&#xff09;。本教程介绍如何在不同操作系统的ECS实例上&#xff0c;手动搭建WordPress网…

SonarQube快速实践

SonarQube快速实践 1. 简介 SonarQube 是一个本地部署的代码分析工具&#xff0c;旨在检测30多种编程语言、框架和基础设施即代码&#xff08;IaC&#xff09;平台中的代码问题。通过直接集成到您的持续集成&#xff08;CI&#xff09;流水线中或在我们支持的DevOps平台之一上…

转行AI产品经理,第二步怎么走

之前写了一篇文章《转行AI产品经理&#xff0c;第一步怎么走》&#xff0c;好多小伙伴私信我&#xff0c;和我聊了一些细节&#xff0c;我感觉有必要再聊一聊&#xff0c;转行AI产品经理&#xff0c;第二步怎么走。 在上一篇文章里我们聊了一个小糖人游戏&#xff0c;从而得出…

用AI怎样来迭代优秀的学习法,AI+费曼学习法的妙用!

大家好&#xff0c;我是Shelly&#xff0c;一个专注于输出AI工具和科技前沿内容的AI应用教练&#xff0c;体验过300款以上的AI应用工具。关注科技及大模型领域对社会的影响10年。关注我一起驾驭AI工具&#xff0c;拥抱AI时代的到来。 AI工具集1&#xff1a;大厂AI工具【共23款…

Quartus Ⅱ仿真 2.三人表决电路

奥里给&#xff0c;一起加油啊&#xff0c;我会陪着你们的&#xff01; 仿真波形&#xff1a; 输出结果&#xff1a; 介绍&#xff1a; 三人表决电路是一种数字逻辑电路&#xff0c;用于实现三个输入信号的多数表决。在这种电路中&#xff0c;如果至少有两个输入为高电平&a…

MySQL-事物隔离级别

1. MySQL事物的四种隔离级别 1.1 读未提交&#xff08;READ UNCOMMITTED&#xff09; READ UNCOMMITED提供了事物之间最小限度的隔离&#xff0c;除了幻读和不可重复读取的操作外&#xff0c;处于这个隔离级别的事务可以读到其它事务还未提交的数据。 1.2 读已提交&#xf…

利用 Direct3D 绘制几何体—7.编译着色器

在 Direct3D 中&#xff0c;着色器程序必须先被编译为一种可移植的字节码。接下来&#xff0c;图形驱动程序将获取这些字节码&#xff0c;并将其重新编译为针对当前系统 GPU 所优化的本地指令 [ATI1]。我们可以在运行期间用下列函数对着色器进行编译。 HRESULT D3DCompileFrom…

创建型模式-----(单例模式)

目录 基本概念 饿汉式&#xff1a; 懒汉式&#xff1a; 上锁双判空版本 std::call_once版本&#xff1a; C11标准后局部静态变量版本&#xff1a; 项目中单例模板的应用 基本概念 单例模式&#xff1a;在程序运行期间只有一份&#xff0c;与程序生存周期一样&#xff0c;…

对比学习论文随笔 1:正负样本对(Contrastive Learning 基础论文篇)

为了阅读的流畅&#xff0c;当前针对相同的代理任务按时间顺序进行梳理&#xff0c;涉及仅使用正负样本思想且优化目标一致的「基础」论文&#xff08;2018-2020&#xff09;&#xff0c;编码器均采用 ResNet。 文章目录 前言对比学习和代理任务&#xff08;Pretext task&#…

浪潮云启操作系统(InLinux)bcache缓存实践:理解OpenStack环境下虚拟机卷、Ceph OSD、bcache设备之间的映射关系

前言 在OpenStack平台上&#xff0c;采用bcache加速ceph分布式存储的方案被广泛用于企业和云环境。一方面&#xff0c;Ceph作为分布式存储系统&#xff0c;与虚拟机存储卷紧密结合&#xff0c;可以提供高可用和高性能的存储服务。另一方面&#xff0c;bcache作为混合存储方案&…

Java笔试06

在Java中&#xff0c;异常可以分为两大类&#xff1a;编译时异常&#xff08;编译时检查异常&#xff09;和运行时异常&#xff08;非编译时检查异常&#xff09;。 编译时异常&#xff08;Checked Exceptions&#xff09;是指在编译时期必须被捕获或声明抛出的异常。这些异常…