集成方案 | 借助 Microsoft Copilot for Sales 与 Docusign,加速销售流程!

news2024/12/24 19:21:02

加速协议信息提取,随时优化邮件内容~
在这里插入图片描述

在当今信息爆炸的时代,销售人员掌握着丰富的数据资源。他们能够通过 CRM 平台、电子邮件、合同库以及其他多种记录系统,随时检索特定个人或组织的关键信息。这些数据对于销售沟通至关重要。然而,若无法即时获取这些信息,其价值便大打折扣。

正因如此,微软推出了 Copilot for Sales,这是一款 AI 驱动的解决方案,能够整合组织内的所有记录系统,并在销售人员日常使用的应用程序(例如 Outlook、Teams 和 Word)中提供即时信息。

2024 年 8 月,Docusign 宣布与 Microsoft Copilot for Sales 实现首批集成。这标志着使用 Microsoft Dynamics 365 Sales 或 Salesforce Sales Cloud 的销售人员现在可以借助 Copilot for Sales,直接在电子邮件或会议中嵌入合同库的关键信息。

这一集成消除了在不同工具间切换的需要,减少了查找账户信息的时间。Copilot for Sales 将在协作应用中智能展示与 CRM 记录相关的 Docusign 合同详情,提供即时访问协议信息的能力。这不仅提升了电子邮件的撰写质量,丰富了对话内容,也简化了交易达成的过程。

在这里插入图片描述

优化销售流程,提升客户互动效率

当销售人员在 Microsoft Outlook 中撰写邮件给潜在客户时,Copilot for Sales 能够无缝接入 Docusign 的协议库,提供与客户组织相关的现有合同信息。这些信息包括历史合同和当前谈判的细节,销售人员无需离开 Outlook 即可获取。Copilot for Sales 呈现的协议摘要包括关键信息,如参与方和文档状态。若需进一步细节,销售人员可通过点击 Docusign 信封图标访问具体条款、日期和金额等。

在谈判过程中,销售人员能够实时访问协议的最新进展,确保沟通时信息的时效性。若谈判有间歇,Copilot for Sales 可作为快速参考,帮助销售人员回顾最新的协议条款,确认保密协议的签署情况等。

”Microsoft Copilot for Sales 释放员工潜力,专注于高价值任务,而 Docusign 的无缝集成则助力销售人员深化客户关系,而非深陷文档细节。这一解决方案精准应对了销售行业的关键挑战,展现了智能技术的实际应用。“——Jason Brommet,微软美洲区现代办公方案负责人

结合 Copilot for Sales 和 Docusign,销售团队不仅能够增加接触客户的机会,还能提升每次互动的质量。这种整合将使销售流程更加高效,缩短销售周期,提升销售人员的整体体验。

借助 AI,打造个性化销售体验

Copilot for Sales 不仅为销售人员提供了快速获取 Docusign 协议核心信息的能力,还通过 Microsoft Azure OpenAI Service 的强大生成式 AI 技术,实现了多项与协议相关的新进展。

该工具利用先进的语言模型,能够为销售人员自动生成电子邮件草稿或总结复杂邮件内容。它能够挖掘语言中的深层含义,并以对话形式呈现给用户,这对于电话销售尤其有益。结合对 Docusign 协议的即时访问,销售人员可以确保在与潜在客户或现有客户的每次交流中都信息完备。

Copilot for Sales 还能根据销售人员的个人联系、权限和项目情况,识别模式并提供定制化信息。随着使用频率的增加,其 AI 系统通过数据分析不断优化,以更好地满足团队的销售需求。Docusign 作为这一持续进化的智能系统的一部分,致力于使日常销售任务更加高效和个性化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2211515.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【端到端】CVPR 2023最佳论文:UniAD解读

作者:知乎一根呆毛授权发布 传统的端到端网络是用多个小model串起来,但这会有误差累积的问题,因此我们提出了UniAD,一个综合框架,把所有任务整合到一个网络。整一个网络都是为planner而进行设计的。 Introduction a传…

SQL性能优化指南:如何优化MySQL多表join场景

目录 多表join问题SQL 这里解释下 Using join buffer (Block Nested Loop): 对性能产生的影响: 三种join算法介绍 join操作主要使用以下几种算法: (1)Nested Loop Join (2)Block Nested …

生信服务器配置:优化生物信息学数据处理的最佳实践

介绍 在生物信息学研究中,处理和分析大规模数据集(如基因组、转录组和蛋白质组数据)需要强大的计算资源和精确的服务器配置。生信服务器配置的优化可以显著提高数据处理的效率和结果的准确性。本文将探讨生信服务器配置的关键要素&#xff0…

【LeetCode热题100】分治-快排

本篇博客记录分治快排的4道题目&#xff1a;颜色分类、排序数组、数组中的第K个最大元素、数组中最小的N个元素&#xff08;库存管理&#xff09;。 class Solution { public:void sortColors(vector<int>& nums) {int n nums.size();int left -1,right n;for(int…

【实战项目】——Boost搜索引擎(五万字)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、项目的相关背景 1.1、什么是Boost库&#xff1f; 1.2、什么是搜索引擎&#xff1f; 1.3、为什么要做Boost库搜索引擎&#xff1f; 二、搜索引擎的宏观原…

VirtualBOX虚拟机提高速度,鼠标卡顿解决——未来之窗数据恢复

一、刚安装完操作系统&#xff0c;鼠标操作不灵敏 需要安装系统增强 二、系统增强作用 1.鼠标丝滑 2.文件共享 3.可以共享剪贴板 三、安装步骤-设备-安装增强 四、安装步骤-设备-选择光驱 五、安装增强软件然后重启 六、阿雪技术观 拥抱开源与共享&#xff0c;见证科技进…

【算法】动态规划:从斐波那契数列到背包问题

【算法】动态规划&#xff1a;从斐波那契数列到背包问题 文章目录 【算法】动态规划&#xff1a;从斐波那契数列到背包问题1.斐波那契数列2.爬楼梯3.零钱转换Python代码 4.零钱兑换 II5.组合数dp和排列数dp6.为什么动态规划的核心思想计算组合数的正确方法代码实现 为什么先遍历…

【C++打怪之路Lv8】-- string类

&#x1f308; 个人主页&#xff1a;白子寰 &#x1f525; 分类专栏&#xff1a;重生之我在学Linux&#xff0c;C打怪之路&#xff0c;python从入门到精通&#xff0c;数据结构&#xff0c;C语言&#xff0c;C语言题集&#x1f448; 希望得到您的订阅和支持~ &#x1f4a1; 坚持…

智能汽车智能网联

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 屏蔽力是信息过载时代一个人的特殊竞争力&#xff0c;任何消耗你的人和事&#xff0c;多看一眼都是你的不…

深入理解线性表--顺序表

目录 顺序表- Seqlist -> sequence 顺序 list 表 顺序表的概念 问题与解答 顺序表的分类 静态顺序表 动态顺序表 问题与解答(递进式) 动态顺序表的实现 尾插 头插 尾删 头删 指定位置插入 指定位置删除 销毁 总结 前言&#xff1a;线性表是具有相同特性的一类数据结构…

【exceljs】纯前端如何实现Excel导出下载和上传解析?

前段时间写过一篇类似的文章&#xff0c;介绍了sheetjs。最近发现了一个更好用的库ExcelJS&#xff0c;它支持高级的样式自定义&#xff0c;并且使用起来也不复杂。实际上sheetjs也支持高级自定义样式&#xff0c;不过需要使用付费版。 下面对比了Exceljs和Sheetjs&#xff1a…

Linux的习题+一道回溯类型的算法题

Linux的习题 Linux环境与版本 1.linux 2.6.* 内核默认支持的文件系统有哪些&#xff1f;[多选] A.ext3 B.ext2 C.ext4 D.xfs E.ufs 正确答案&#xff1a;ABCD A 全称Linux extended file system, extfs,即Linux扩展文件系统&#xff0c;ext2为第二代 D XFS一种高性能的日…

使用频率最高的 opencv 基础绘图操作 - python 实现

以下是 opencv-python 基本操作绘制示例&#xff0c;绘制&#xff1a; 1&#xff09;圆&#xff0c;2&#xff09;矩形&#xff0c;3&#xff09;线段&#xff0c;4&#xff09;文本。 安装 opencv-python pip install opencv-python 在图上绘制圆的操作&#xff0c;示例如…

HCIP-HarmonyOS Application Developer 习题(五)

1、以下哪种原子化布局能力属于自适应变化能力? A. 拉伸 B.占比 C. 隐藏 D.拆行 答案&#xff1a;A 分析&#xff1a;划分为“自适应变化能力”和“自适应布局能力”两类。 其中&#xff0c;自适应变化能力包含了缩放能力和拉伸能力&#xff0c;自适应布局能力包含了隐藏、折…

『Mysql进阶』Mysql explain详解(五)

目录 Explain 介绍 Explain分析示例 explain中的列 1. id 列 2. select_type 列 3. table 列 4. partitions 列 5. type 列 6. possible_keys 列 7. key 列 8. key_len 列 9. ref 列 10. rows 列 11. filtered 列 12. Extra 列 Explain 介绍 EXPLAIN 语句提供有…

Spring学习——SpringAOP

0. IOC思想(DI)1. 关键注解Repositorypublic class DeptDaoImpl1 implements DeptDao{}RepositoryPrimarypublic class DeptDaoImpl2 implements DeptDao{}Servicepublic class DeptServiceImpl implements DeptService{AutowiredQulifier("deptDaoImpl2")private De…

UE5学习笔记24-添加武器弹药

一、给角色的武器添加弹药 1.创建界面&#xff0c;根据笔记23的界面中添加 2.绑定界面控件 UPROPERTY(meta (Bindwidget))UTextBlock* WeaponAmmoAmount;UPROPERTY(meta (Bindwidget))UTextBlock* CarriedAmmoAmount; 3.添加武器类型枚举 3.1创建武器类型枚举头文件 3.2创建文…

C++容器:map

1.铺垫 1.1map和unorder_map&#xff0c;两者的实现思想不同&#xff0c;但是用法是相同的&#xff1b;map的思想是平衡二叉树&#xff1b;unorder_map的思想是哈希&#xff1b; 1.2在现实及做题中&#xff0c;百分之99&#xff0c;都在使用unorder_map&#xff0c;接下来的讲…

2024 第一次周赛

A: 题目大意 骑士每连续 i 天每天会得到 i 个金币&#xff0c;&#xff08;i 1&#xff0c; 2&#xff0c; 3 &#xff0c; …&#xff09;,那么展开看每一天可以得到的金币数&#xff1a;1 2 2 3 3 3 4 4 4 5 5 5 5 5 … 可以发现就是1个1 &#xff0c;2个2, 3个3…,那么我…

P20机型HW睡眠省电-调研

摘要 AI睡眠场景识别 不激进的智能管控 睡眠省电 UI 以前有单独的睡眠开关选项&#xff0c;现在没有了&#xff0c;但是智能充电模式是使用AI睡眠模式 睡眠识别 华为专利上提到的论文《BTP-A Bedtime Predicting Algorithm》 各种事件状态&#xff08;亮灭屏、alarm、主动…