大数据毕业设计选题推荐-B站短视频数据分析系统-Python数据可视化-Hive-Hadoop-Spark

news2024/11/25 22:32:29

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、PHP、.NET、Node.js、GO、微信小程序、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

近年来,短视频的迅猛发展已经成为互联网内容生态的重要组成部分。根据《2023年中国短视频行业研究报告》显示,截至2023年,中国短视频用户规模已经突破9亿,占据网民总数的90%以上。尤其是像B站这样以二次元文化起家的平台,逐渐成为年轻人喜爱的视频内容消费平台。B站的用户主要集中在18-35岁的年轻群体,他们活跃度高、互动性强,尤其是在UP主(内容创作者)与用户之间建立了高度互动的社区文化。根据B站的财报,2023年第四季度,B站的月活跃用户数达到了3.5亿,UP主数量突破300万,每月有超过1000万条短视频上传。这些数据表明,B站短视频的生态已经形成了一个极具影响力的内容产业。

然而,随着短视频的海量增长,如何有效管理、分析和利用这些视频及用户反馈数据成为平台亟待解决的问题。B站的内容涵盖多个领域,从游戏、生活、科技到学习、二次元文化等,用户的观看偏好、互动行为和反馈信息呈现出多样化的特征。在这种大数据环境下,平台需要能够对用户行为进行精确的统计分析,借助数据挖掘技术掌握UP主及其内容的受欢迎程度、观看时间段、视频时长的分布等,进而为平台的推荐算法、用户粘性提升提供数据支撑。因此,设计一个B站短视频数据分析系统,不仅能优化平台运营策略,还能为学术界提供一种基于内容消费和用户行为分析的新视角。

本课题旨在构建一个B站短视频数据分析系统,其意义不仅体现在平台管理上的提升,还为数据分析技术的应用提供了广阔空间。首先,在用户管理方面,系统能够有效掌握用户的观看习惯、偏好及活跃度数据,为精准推荐和个性化服务奠定基础。其次,短视频信息管理模块通过数据爬取技术,实时获取UP主上传的短视频内容、播放量、点赞量、评论数量等关键数据,并通过数据分析预测热门内容趋势,为平台的运营和推广提供重要依据。此外,用户反馈管理功能能够汇总和分析用户的评论和建议,帮助平台优化内容审核和改进用户体验。

更为重要的是,该系统的可视化大屏模块通过数据图表展示关键指标,如发布地统计、UP主词云图、视频时长统计等,使平台运营者能够一目了然地掌握短视频生态的全貌。尤其是UP主词云图可以直观展示出UP主的内容关键词和受欢迎度,帮助平台发现潜在的优质创作者。同时,视频时长和点赞量、播放量等的统计分析,可以为UP主提供有价值的创作参考,优化其视频内容制作。本课题不仅具有应用价值,还能为B站乃至其他短视频平台的数据分析系统建设提供借鉴,促进短视频行业的智能化、数据化发展。

二、开发环境

  • 开发语言:Java/Python
  • 数据库:MySQL
  • 系统架构:B/S
  • 后端:SpringBoot/SSM/Django/Flask
  • 前端:Vue

三、系统界面展示

  • B站短视频数据分析系统-Python数据可视化系统界面展示:

四、部分代码设计

  • 项目实战-代码参考:
def fetch_video_data(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')

    # 获取短视频信息:标题、UP主、播放量等
    video_title = soup.find('h1').text
    up_master = soup.find('a', {'class': 'up'}).text
    play_count = soup.find('span', {'class': 'play-count'}).text

    # 保存到数据库
    video = Video(title=video_title, up_master=up_master, play_count=play_count)
    video.save()

# 示例爬取多个视频的函数
def crawl_videos():
    urls = ['https://example.com/video/1', 'https://example.com/video/2']
    for url in urls:
        fetch_video_data(url)
<template>
  <div id="location-chart" style="width: 600px; height: 400px;"></div>
</template>

<script>
import * as echarts from 'echarts';

export default {
  name: 'LocationChart',
  mounted() {
    this.initChart();
  },
  methods: {
    initChart() {
      const chart = echarts.init(document.getElementById('location-chart'));
      const option = {
        title: {
          text: '发布地统计',
          left: 'center',
        },
        tooltip: {
          trigger: 'item',
        },
        series: [
          {
            name: '发布地',
            type: 'pie',
            radius: '50%',
            data: [
              { value: 1048, name: '北京' },
              { value: 735, name: '上海' },
              { value: 580, name: '广州' },
              { value: 484, name: '深圳' },
              { value: 300, name: '其他' },
            ],
          },
        ],
      };
      chart.setOption(option);
    },
  },
};
</script>
<template>
  <div id="up-master-word-cloud" style="width: 600px; height: 400px;"></div>
</template>

<script>
import * as echarts from 'echarts';

export default {
  name: 'UpMasterWordCloud',
  mounted() {
    this.initWordCloud();
  },
  methods: {
    initWordCloud() {
      const chart = echarts.init(document.getElementById('up-master-word-cloud'));
      const option = {
        title: {
          text: 'UP主词云图',
          left: 'center',
        },
        tooltip: {
          show: true,
        },
        series: [
          {
            type: 'wordCloud',
            gridSize: 2,
            sizeRange: [12, 50],
            rotationRange: [-90, 90],
            shape: 'circle',
            textStyle: {
              normal: {
                color() {
                  return `rgb(${[
                    Math.round(Math.random() * 160),
                    Math.round(Math.random() * 160),
                    Math.round(Math.random() * 160),
                  ].join(',')})`;
                },
              },
            },
            data: [
              { name: '老番茄', value: 1000 },
              { name: 'LexBurner', value: 800 },
              { name: '花少北', value: 600 },
              { name: '逍遥散人', value: 400 },
              { name: '何同学', value: 300 },
            ],
          },
        ],
      };
      chart.setOption(option);
    },
  },
};
</script>

五、论文参考

  • 计算机毕业设计选题推荐-B站短视频数据分析系统-Python数据可视化系统-论文参考:
    在这里插入图片描述

六、系统视频

  • B站短视频数据分析系统-Python数据可视化系统-项目视频:

大数据毕业设计选题推荐-B站短视频数据分析系统-Python数据可视化-Hive-Hadoop-Spark

结语

大数据毕业设计选题推荐-B站短视频数据分析系统-Python数据可视化-Hive-Hadoop-Spark
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:⬇⬇⬇

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2207593.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

软媒市场新蓝海:软文媒体自助发布与自助发稿的崛起

在信息时代的浪潮中,软媒市场以其独特的魅力和无限的潜力,成为了企业营销的新宠。随着互联网的飞速发展,软文媒体自助发布平台应运而生,为企业提供了更加高效、便捷的营销方式。而自助发稿功能的加入,更是让软媒市场的蓝海变得更加广阔。 软媒市场的独特价值 软媒市场之所以能…

YOLO_V8分割

YOLO_V8分割 YOLO安装 pip install ultralytics YOLO的数据集转化看csdn 数据标注EIseg EIseg这块&#xff0c;正常安装就好&#xff0c;但是numpy和各类包都容易有冲突&#xff0c;python版本装第一点 数据标注过程中&#xff0c;记得把JSON和COCO都点上&#xff0c;把自…

计算机毕业设计 基于Hadoop平台的岗位推荐系统的设计与实现 Python毕业设计 Python毕业设计选题【附源码+安装调试】

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

python脚本封装APK,轻松随意无须复杂配置

优点&#xff1a;轻松随意不设置&#xff0c;缺点&#xff1a;新用户试用&#xff0c;VI专属能力。 (笔记模板由python脚本于2024年10月11日 06:16:14创建&#xff0c;本篇笔记适合“资深”编程的coder翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1a;https://www.py…

基于Springboot+Vue的网上订餐系统(含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统中…

@controller注解和@RestController注解详解

文章目录 控制器MVC控制器REST 控制器 controllerRestController总结 控制器 MVC控制器 在了解这两种注解之前我们需要先知道控制器的概念&#xff0c;我们项目中常见的就是MVC控制器&#xff0c;MVC 是一种软件架构模式&#xff0c;它将应用程序分为三个主要组件&#xff1a;…

R语言统计分析——气泡图

参考资料&#xff1a;R语言实战【第2版】 气泡图&#xff08;bubble plot&#xff09;用来展示三个定量变量间的关系&#xff1a;先创建一个二维散点图&#xff0c;然后用点的大小来代表第三个边变量的值。 我们可以使用symbols()函数来创建气泡图。该函数可以在指定的(x,y)坐标…

如何鉴定一段抗体序列的CDR区(CDR1、CDR2、CDR3)

愿武艺晴小朋友一定得每天都开心 如果有一批的抗体序列,可按下面的步骤来处理&#xff1a; (1)可以先处理为fasta的格式&#xff08;或者不处理手动粘贴&#xff09; >20B11 NIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWYQQKPGQPPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAA…

华为启动鸿蒙原生应用开发者激励计划 12月31日前上架最高可获10万元

华为开发者官网今天发布了《鸿蒙原生应用开发者激励计划》的公告。此计划是华为给鸿蒙原生应用的开发者提供的现金及流量扶持的专属激励资源&#xff0c;鼓励开发者积极投入鸿蒙原生应用开发&#xff0c;加速应用上架&#xff0c;共创鸿蒙生态。 开发者需要在本计划要求的报名周…

深度学习:手写感知机

文章目录 前言感知机模型训练模型预测小结 前言 上面是一只猫&#xff0c;人类的大脑可以很轻松地识别出。人脑是如何识别的呢&#xff1f; 人类能够识别出这只猫&#xff0c;是因为这张图片具有猫的典型特征。例如&#xff0c;猫的耳朵、眼睛、猫须、嘴巴等独特的形态特征&am…

gcc学习

理论 在使用 GCC (GNU Compiler Collection) 进行 C 或 C 程序的编译时&#xff0c;可以将整个过程分为四个主要阶段&#xff1a;预处理、编译、汇编和链接。下面是每个阶段的命令示例&#xff1a; 1. 预处理-E 预处理阶段会处理所有的预处理指令&#xff08;如 #include 和…

ArcGis JS天地图 暗色地图

方法一&#xff1a;使用css filter 在body下增加svg&#xff0c;并增加需要用到的滤镜&#xff0c;这边用到x-rays <svg id"svgfilters" aria-hidden"true" style"position: absolute; width: 0; height: 0; overflow: hidden"version"…

刷题 排序算法

912. 排序数组 注意这道题目所有 O(n^2) 复杂度的算法都会超过时间限制&#xff0c;只有 O(nlogn) 的可以通过 快速排序空间复杂度为 O(logn)是由于递归的栈的调用归并排序空间复杂度为 O(n) 是由于需要一个临时数组 (当然也需要栈的调用&#xff0c;但是 O(logn) < O(n) 的…

【华为】配置RIP协议

RIP&#xff08;Routing Information Protocol&#xff09;是一种内部网关协议&#xff08;IGP&#xff09;&#xff0c;主要用于小型网络中的动态路由。RIP有两个主要版本&#xff1a;‌RIPv1和‌RIPv2&#xff0c;它们之间存在一些关键区别&#xff1a; ‌分类支持‌&#xf…

利用FnOS搭建虚拟云桌面,并搭建前端开发环境(一)

利用FnOS搭建虚拟云桌面&#xff0c;并搭建前端开发环境 一 飞牛FnOS官方文档一、安装FnOS【Win11系统】1.下载VirtualBox2.下载FnOS镜像3.创建虚拟机4.启动完成后&#xff0c;会进入这样一个界面&#xff0c;这个基本上后续就后台了 本人在网上冲浪了很久&#xff0c;一直也没…

python pyqt5 +vtk 显示obj模型文件

python pyqt5 vtk 显示obj模型文件 准备代码参考 准备 名称版本python3.8.19pyqt55.15.9pyqt5-tools5.15.9.3.3pyqt5-sip12.15.0vtk9.3.1 代码 使用wsl2 和 XLaunch 配合pyqt5进行可视化是可行的。使用pip在conda环境中安装pyqt5相关组件。以下代码在 WSL2 的 Ubuntu 20.04 …

Java运算符逻辑控制

目录 一、运算符 1.1基本四则运算符&#xff08;加减乘除模&#xff09; 1.2增量运算符 1.3关系运算符 1.4自增、自减运算符 1.5逻辑运算符 1.6位运算符 1.7移位运算符 1.8条件运算符&#xff08;三目运算符&#xff09; 二、逻辑控制 2.1if语句 2.2switch语句 2.…

Docker 搭建mysql 连接超时问题,xxl-job启动mysql连接报错

1.本地连接Navicat报错信息&#xff0c;猜测是navicat默认连接超时导致的&#xff0c;后面换成idea一个插件虽然慢但连接上了 2013 - Lost connection to MySQL server at reading initial communication packet 2.启动xxl-job会报错&#xff0c;网上有人mysql驱动与数据库不匹…

【高频SQL基础50题】31-35

又到SQL。 目录 1.查询结果的质量和占比 2.求关注者的数量 3.指定日期的产品价格 4.好友申请 II &#xff1a;谁有最多的好友 5.按日期分组销售产品 1.查询结果的质量和占比 聚合题。 # Write your MySQL query statement below SELECT t1.query_name,ROUND((SUM(t1.r…

问题记录(个人)

备注&#xff1a; 在7月10日记录之前遇到的问题及解决方法: 一&#xff1a;常见的访问问题&#xff1a; 403 Forbidden&#xff1a;&#xff08;未有请求权限&#xff09; 表示服务器理解请求但是拒绝执行它。这通常是由于服务器上的文件或资源没有正确的读、写或执行权限&…