文章目录
- 一、前言
- 1.1 发包的BlinkToRadio的数据包格式
- 二、混淆基站源码分析
- 2.1 Makefile
- 2.2 组件连接
- 2.3 主逻辑代码
一、前言
1.1 发包的BlinkToRadio的数据包格式
如下,注意:AM层类型(1byte)即handlerID使可以在组件中修改的。
二、混淆基站源码分析
2.1 Makefile
COMPONENT=BaseStationC
CFLAGS += -DCC2420_NO_ACKNOWLEDGEMENTS
CFLAGS += -DCC2420_NO_ADDRESS_RECOGNITION
CFLAGS += -DTASKLET_IS_TASK
CFLAGS += -DCC2420_DEF_CHANNEL=14
include $(MAKERULES)
这里加多了几句,就可以监听同样信道中的消息
- CFLAGS += -DCC2420_NO_ACKNOWLEDGEMENTS
这个表示不返回ACK - CFLAGS += -DCC2420_NO_ACKNOWLEDGEMENTS
表示不开启地址识别
CFLAGS += -DCC2420_NO_ACKNOWLEDGEMENTS
CFLAGS += -DCC2420_NO_ADDRESS_RECOGNITION
CFLAGS += -DTASKLET_IS_TASK
2.2 组件连接
configuration BaseStationC {
}
implementation {
components MainC, BaseStationP, LedsC;
components SerialActiveMessageC as Serial;
MainC.Boot <- BaseStationP;
BaseStationP.RadioControl -> Radio;
BaseStationP.SerialControl -> Serial;
BaseStationP.UartSend -> Serial;
BaseStationP.UartReceive -> Serial.Receive;
BaseStationP.UartPacket -> Serial;
BaseStationP.UartAMPacket -> Serial;
//radio
components ActiveMessageC as Radio
BaseStationP.RadioSend -> Radio;
BaseStationP.RadioReceive -> Radio.Receive;
BaseStationP.RadioSnoop -> Radio.Snoop;
BaseStationP.RadioPacket -> Radio;
BaseStationP.RadioAMPacket -> Radio;
BaseStationP.Leds -> LedsC;
}
- BaseStationP.RadioSnoop -> Radio.Snoop;
通过这个接口去拿监听的包
2.3 主逻辑代码
#include "AM.h"
#include "Serial.h"
module BaseStationP @safe() {
uses {
interface Boot;
interface SplitControl as SerialControl;
interface SplitControl as RadioControl;
interface AMSend as UartSend[am_id_t id];
interface Receive as UartReceive[am_id_t id];
interface Packet as UartPacket;
interface AMPacket as UartAMPacket;
interface AMSend as RadioSend[am_id_t id];
interface Receive as RadioReceive[am_id_t id];
interface Receive as RadioSnoop[am_id_t id];
interface Packet as RadioPacket;
interface AMPacket as RadioAMPacket;
interface Leds;
}
}
implementation
{
enum {
UART_QUEUE_LEN = 12,
RADIO_QUEUE_LEN = 12,
};
message_t uartQueueBufs[UART_QUEUE_LEN];
message_t * ONE_NOK uartQueue[UART_QUEUE_LEN];
uint8_t uartIn, uartOut;
bool uartBusy, uartFull;
message_t radioQueueBufs[RADIO_QUEUE_LEN];
message_t * ONE_NOK radioQueue[RADIO_QUEUE_LEN];
uint8_t radioIn, radioOut;
bool radioBusy, radioFull;
task void uartSendTask();
task void radioSendTask();
void dropBlink() {
call Leds.led2Toggle();
}
void failBlink() {
call Leds.led2Toggle();
}
event void Boot.booted() {
uint8_t i;
for (i = 0; i < UART_QUEUE_LEN; i++)
uartQueue[i] = &uartQueueBufs[i];
uartIn = uartOut = 0;
uartBusy = FALSE;
uartFull = TRUE;
for (i = 0; i < RADIO_QUEUE_LEN; i++)
radioQueue[i] = &radioQueueBufs[i];
radioIn = radioOut = 0;
radioBusy = FALSE;
radioFull = FALSE;
call RadioControl.start();
call SerialControl.start();
}
event void RadioControl.startDone(error_t error) {
if (error == SUCCESS) {
radioFull = FALSE;
}
}
event void SerialControl.startDone(error_t error) {
if (error == SUCCESS) {
uartFull = FALSE;
}
}
event void SerialControl.stopDone(error_t error) {}
event void RadioControl.stopDone(error_t error) {}
uint8_t count = 0;
message_t* ONE receive(message_t* ONE msg, void* payload, uint8_t len);
event message_t *RadioSnoop.receive[am_id_t id](message_t *msg,
void *payload,
uint8_t len) {
return receive(msg, payload, len);
}
event message_t *RadioReceive.receive[am_id_t id](message_t *msg,
void *payload,
uint8_t len) {
return receive(msg, payload, len);
}
message_t* receive(message_t *msg, void *payload, uint8_t len) {
message_t *ret = msg;
atomic {
if (!uartFull)
{
ret = uartQueue[uartIn];
uartQueue[uartIn] = msg;
uartIn = (uartIn + 1) % UART_QUEUE_LEN;
if (uartIn == uartOut)
uartFull = TRUE;
if (!uartBusy)
{
post uartSendTask();
uartBusy = TRUE;
}
}
else
dropBlink();
}
return ret;
}
uint8_t tmpLen;
task void uartSendTask() {
uint8_t len;
am_id_t id;
am_addr_t addr, src;
message_t* msg;
atomic
if (uartIn == uartOut && !uartFull)
{
uartBusy = FALSE;
return;
}
msg = uartQueue[uartOut];
tmpLen = len = call RadioPacket.payloadLength(msg);
id = call RadioAMPacket.type(msg);
addr = call RadioAMPacket.destination(msg);
src = call RadioAMPacket.source(msg);
call UartPacket.clear(msg);
call UartAMPacket.setSource(msg, src);
if (call UartSend.send[id](addr, uartQueue[uartOut], len) == SUCCESS)
call Leds.led1Toggle();
else
{
failBlink();
post uartSendTask();
}
}
event void UartSend.sendDone[am_id_t id](message_t* msg, error_t error) {
if (error != SUCCESS)
failBlink();
else
atomic
if (msg == uartQueue[uartOut])
{
if (++uartOut >= UART_QUEUE_LEN)
uartOut = 0;
if (uartFull)
uartFull = FALSE;
}
post uartSendTask();
}
event message_t *UartReceive.receive[am_id_t id](message_t *msg,
void *payload,
uint8_t len) {
message_t *ret = msg;
bool reflectToken = FALSE;
atomic
if (!radioFull)
{
reflectToken = TRUE;
ret = radioQueue[radioIn];
radioQueue[radioIn] = msg;
if (++radioIn >= RADIO_QUEUE_LEN)
radioIn = 0;
if (radioIn == radioOut)
radioFull = TRUE;
if (!radioBusy)
{
post radioSendTask();
radioBusy = TRUE;
}
}
else
dropBlink();
if (reflectToken) {
//call UartTokenReceive.ReflectToken(Token);
}
return ret;
}
task void radioSendTask() {
uint8_t len;
am_id_t id;
am_addr_t addr,source;
message_t* msg;
atomic
if (radioIn == radioOut && !radioFull)
{
radioBusy = FALSE;
return;
}
msg = radioQueue[radioOut];
len = call UartPacket.payloadLength(msg);
addr = call UartAMPacket.destination(msg);
source = call UartAMPacket.source(msg);
id = call UartAMPacket.type(msg);
call RadioPacket.clear(msg);
call RadioAMPacket.setSource(msg, source);
if (call RadioSend.send[id](addr, msg, len) == SUCCESS)
call Leds.led0Toggle();
else
{
failBlink();
post radioSendTask();
}
}
event void RadioSend.sendDone[am_id_t id](message_t* msg, error_t error) {
if (error != SUCCESS)
failBlink();
else
atomic
if (msg == radioQueue[radioOut])
{
if (++radioOut >= RADIO_QUEUE_LEN)
radioOut = 0;
if (radioFull)
radioFull = FALSE;
}
post radioSendTask();
}
}
步骤如下:
- 上电开机后
1.1 初始化队列
1.2 开启无线控制器call RadioControl.start();
1.3 开启串口控制器call SerialControl.start();
- 编写接收窃听到的包的回调函数
2.1 通过串口把数据输出
event message_t *RadioSnoop.receive[am_id_t id](message_t *msg, void *payload,uint8_t len)
{
return receive(msg, payload, len);
}