Spark算子使用-Map,FlatMap,Filter,diatinct,groupBy,sortBy

news2025/1/17 13:55:50

目录

Map算子使用

FlatMap算子使用

Filter算子使用-数据过滤

Distinct算子使用-数据去重

groupBy算子使用-数据分组

sortBy算子使用-数据排序


Map算子使用

# map算子主要使用长场景,一个转化rdd中每个元素的数据类型,拼接rdd中的元素数据,对rdd中的元素进行需求处理
# 需求,处理hdfs中的学生数据,单独获取每个学生的信息
from pyspark import SparkContext

sc = SparkContext()

# 1-读取数据
rdd = sc.textFile("hdfs://node1:8020/data/student.txt")
# 2- 使用转化算子进行数据处理
# map中的lambda表达式,必须定义一个参数,用来接收rdd中的元素数据, 注意:x参数如何处理,要看x接收的数据类型
rdd2 = rdd.map(lambda x : x.split(','))
# 3-从rdd2中获取姓名数据
rdd3 =rdd2.map(lambda x : x[1])

# lambda 函数能进行简单的数据计算,如果遇到复杂数据计算时,就需要使用自定义函数
# 获取年龄数据,并且转化年龄数据为int类型,将年龄和性别合并一起保存成元组
## 获取年龄
def func(x):
    # 1-切割数据
    data_split = x.split(',')
    # 2-转换数据类型
    age = int(data_split[3])
    # 3-拼接性别与年龄
    data_tuple = (data_split[2],age)
    return data_tuple


# 将函数的名字传递到map中,不要加括号
rdd4 = rdd.map(func)


# 触发执行算子,查看读取的数据
res = rdd.collect()
print(res)

res2 = rdd2.collect()
print(res2)

res3 = rdd3.collect()
print(res3)

res4 = rdd4.collect()
print(res4)

FlatMap算子使用

# FlatMap算子使用
# 主要场景是对二维嵌套的数据降维操作  [[1,张三],[2,李四],[3,王五]]  --->> [1,张三,2,李四,3,王五]
from pyspark import SparkContext

sc = SparkContext()

# 生成的rdd
rdd = sc.parallelize([['1', 'alice', 'F', '32'], ['2', 'Tom', 'M', '22'], ['3', 'lili', 'F', '18'], ['4', 'jerry', 'M', '24']])

# 使用flatmap
rdd1 = rdd.flatMap(lambda x: x)  # 直接返回x,会自动将x中的元素数据取出,放入新的rdd中

# 查看数据
res = rdd1.collect()
print(res)

Filter算子使用-数据过滤

# RDD数据过滤
# 需求:过滤年龄大于20岁的信息
from pyspark import  SparkContext
sc = SparkContext()


# 1- 读取hdfs中的学生数据
rdd = sc.textFile('hdfs://node1:8020/data/student.txt')


# 2- 使用转化算子进行数据处理
# map中的lambda表达式,必须定义一个参数,用来接收rdd中的元素数据, 注意:x参数如何处理,要看x接收的数据类型
rdd2 = rdd.map(lambda x:x.split(','))
# 使用fliter方法进行数据过滤
# lambda x:过滤条件  可以当成 if 操作  if 条件
# 符合条件的数据会返回保存在新的rdd中
rdd3 = rdd2.filter(lambda x :int(x[3]) > 20)


# 查看数据
res = rdd2.collect()
print(res)

res3 = rdd3.collect()
print(res3)

Distinct算子使用-数据去重

# distinct  去重算子
# rdd中有重复数据时,可以进行去重
from pyspark import  SparkContext
sc = SparkContext()


# 1- 读取hdfs中的学生数据
rdd = sc.textFile('hdfs://node1:8020/data/student.txt')

# 2- 使用转化算子进行数据处理
# map中的lambda表达式,必须定义一个参数,用来接收rdd中的元素数据, 注意:x参数如何处理,要看x接收的数据类型
rdd2 = rdd.map(lambda x:x.split(','))

# 3-从rdd2中获取性别数据
rdd3 = rdd2.map(lambda x : x[2])

# 对rdd3中重复数据去重
rdd4 = rdd3.distinct()


# 查看数据
res = rdd3.collect()
print(res)

res1 = rdd4.collect()
print(res1)

groupBy算子使用-数据分组

from pyspark import  SparkContext
sc = SparkContext()


# 1- 读取hdfs中的学生数据
rdd = sc.textFile('hdfs://node1:8020/data/student.txt')

# 2- 使用转化算子进行数据处理
# map中的lambda表达式,必须定义一个参数,用来接收rdd中的元素数据, 注意:x参数如何处理,要看x接收的数据类型
rdd2 = rdd.map(lambda x:x.split(','))

# 3-对性别进行分组
# lambda x: hash取余的计算  hash(数据)%分组数      余数相同的数据会放在一起
rdd3 = rdd.groupBy(lambda x:hash(x[2]) % 2)
# 查看分组的数据内容  mapValues 取出分组后的数据值,对数据值转为列表即可
rdd4 = rdd3.mapValues(lambda x:list(x))

# 查看数据
res2 = rdd2.collect()
print(res2)

res3 = rdd3.collect()
print(res3)

res4 = rdd4.collect()
print(res4)

分组算子用到了哈希算法,lambda x: hash取余的计算  hash(数据)%分组数      余数相同的数据会放在一起
rdd3 = rdd.groupBy(lambda x:hash(x[2]) % 2)

sortBy算子使用-数据排序

# RDD的数据排序
from pyspark import SparkContext

sc = SparkContext()

# 创建数据
# 非kv数据
rdd = sc.parallelize([10,45,27,18,5,29])

# 在spark中可以使用元组表示kv数据(k,v)
rdd2 = sc.parallelize([('张三',27),('李四',18),('王五',31),('赵六',21)])

rdd1 = sc.parallelize([(666,'火眼金睛'),(2000,'筋斗云'),(888,'顺风耳'),(1314,'降龙十八掌')])


# 数据排序
# 非kv数据
rdd3 = rdd.sortBy(lambda x: x)  # 默认升序,从小到大排
rdd4 = rdd.sortBy(lambda x: x,ascending=False)  # 降序


# kv数据排序 x接收(k,v)数据  需要指定采用哪个值进行排序
# 根据v值进行排序
rdd5 = rdd2.sortBy(lambda x: x[1])
rdd6 = rdd2.sortBy(lambda x: x[1],ascending=False)

# 根据k值进行排序
rdd7 = rdd1.sortBy(lambda x: x[0])
rdd8 = rdd1.sortBy(lambda x: x[0],ascending=False)



# 查看结果
# 非kv数据
res1 = rdd3.collect()
res2 = rdd4.collect()
print(res1)
print(res2)


# kv数据排序
res5 = rdd5.collect()
res6 = rdd6.collect()
print(res5)
print(res6)



res7 = rdd7.collect()
res8 = rdd8.collect()
print(res7)
print(res8)

join算子使用-数据关联

准备数据,模拟表关联

students.txt

students2.txt

from pyspark import SparkContext
# rdd也是使用join算子进行kv数据关联 ,如果需要将多个rdd数据关联在一起
# 需要现将rdd的数据转为kv结构,关联的字段数据作为key
sc = SparkContext()
# 分别读取两个文件数据
rdd1 = sc.textFile('hdfs://node1:8020/data/students.txt')
rdd2 = sc.textFile('hdfs://node1:8020/data/students2.txt')

# 切割行数
rdd_line1 = rdd1.map(lambda x:x.split(','))
rdd_line2 = rdd2.map(lambda x:x.split(','))

# 将rdd数据进行关联
# 将关联的数据转为kv结构
rdd_kv1 = rdd_line1.map(lambda x:(x[0],x))
rdd_kv2 = rdd_line2.map(lambda x:(x[0],x))

# 使用join关联
rdd_join = rdd_kv1.join(rdd_kv2) # 内关联
rdd_leftjoin = rdd_kv1.leftOuterJoin(rdd_kv2) # 左关联
rdd_rightjoin = rdd_kv1.rightOuterJoin(rdd_kv2) # 右关联


# 查看数据

res3 = rdd_join.sortBy(lambda x:x[0]).collect() # 找相同数据
print(res3)

res4 = rdd_leftjoin.collect() # 左表数据全部展示,右边右相同数据展示,没有相同数据为空None
print(res4)

res5 = rdd_rightjoin.collect() # 右表数据全部展示,左边右相同数据展示,没有相同数据为空None
print(res5)

 join内关联:只有共同的才展示

leftOuterJoin左关联:左表数据全部展示,右边右相同数据展示,没有相同数据为空None

rightOuterJoin右关联:右表数据全部展示,左边右相同数据展示,没有相同数据为空None

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2198713.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

NUKE 15有哪些新的改进功能?影视后期特效合成NUKE 15 安装包分享 【Mac/win】

Nuke 15是一款由英国The Foundry公司开发的专业的合成软件,被广泛用于电影、电视和广告制作中的后期合成和特效制作。 Nuke 15拥有强大的功能和灵活性,可以帮助用户处理各种复杂的合成任务,包括图像修复、色彩校正以及粒子特效等。它具备高效…

sql注入第8关

手工注入麻烦 目录 判断闭合方式 判断注入类型 手工注入 1、获取数据库名 2、爆破数据库的名字(security) 3、爆破表的数量 4、判断表名的长度 5、判断表的列名数量 6、判断表的列名的名字 7、获取表的数据 8、判断数据的长度 9、判断数据的…

在 Hugging Face MTEB 排行榜上比较 ELSER 的检索相关性

作者:来自 Elastic Aris Papadopoulos 及 Serena Chou 本博客对 ELSER 在 Hugging Face MTEB 排行榜上的检索相关性进行了比较。 在 Hugging Face MTEB 排行榜上比较 ELSER 的检索相关性 ELSER(Elastic Learned Sparse EncodeR)是 Elastic …

WMS 智慧仓储管理系统的可视化管理_SunWMS

【大家好,我是唐Sun,唐Sun的唐,唐Sun的Sun。一站式数智工厂解决方案服务商】 WMS 智慧仓储管理系统的可视化管理主要表现在以下几个方面: 首先是库存可视化。通过系统,仓库管理人员能够以直观的图表、图形等形式清晰地…

pdf怎么加密码怎么设置密码?这几种pdf设置密码的方法简单!

pdf怎么加密码怎么设置密码?PDF格式作为现代办公和学习中频繁使用的文档类型,其身影遍布于各类场景,然而,在享受PDF带来的便利之余,不少用户对其安全性产生了疑虑,尽管PDF文件相较于其他格式更难被直接编辑…

如何查看是否是ip转发?

一、什么是ip转发 ip转发指的是路由器或者其他网络设备把接受的ip数据包从一个接口转发到另一个ip的过程。在ip转发的过程中,如果某个设备接收到某个数据包时发现该设备不是此数据包的最终目的地,它就会根据路由表中的信息将此数据包转发到下一个适合的…

10.8摩尔学习知识点

今天学习获取数据 在摩尔云平台找到要修改的主视图,然后点击操作功能,点击新增,直接输入名字获取数据,然后,显示顺序15,显示是,点击确定,然后就是自定义类上面输入创建的类名&#…

006集—— CAD锁文档的用法(CAD—C#二次开发入门)

CAD 二开中,当要在除当前文档外的其它文档的模型空间或图纸空间中添加图元时,需要先锁定其文档。用户可用要锁定的Document对象的LockDocument方法进行锁定。在调用LockDocument方法后,将返回一个DocumentLock对象。 本例创建一个新的文档然…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《面向电动汽车用户的电价套餐模块化设计 》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

数学建模算法与应用 第1章 线性规划

第1章 线性规划 线性规划是数学规划领域的重要分支,广泛应用于资源配置、生产计划、物流管理等领域。它主要用于解决如何在满足一定约束条件下,使目标函数(如成本、利润等)达到最大或最小的问题。第一章将介绍线性规划的基本概念…

点可云ERP进销存V8版本——其他支出单使用说明

其他支出单用于记录除采购内容外其支出资金,如:人工运输费、安装维修服务、差旅报销等。新增保存之后,对应资金账户将减少金额额度,并做存储记录,可在现金银行报表中体现。 新增操作 接下来我们讲解新增单据步骤。如上…

【CSS】flex配合margin实现元素均匀分布

现有代码如下&#xff0c;要求不使用网格布局&#xff0c;根据剩余空间设置margin <div className"container">{Array.from({ length: 12 }, (_, i) > i).map((item) > (<div className"box">{item}</div>))} </div>.conta…

《CUDA编程》6.CUDA的内存组织

前面几章讲了一些编写高性能CUDA程序的要点&#xff0c;但还有很多其他需要注意的&#xff0c;其中最重要的就是合理的使用设备内存 1 CUDA的内存组织简介 现代计算机中的内存存在一种组织结构(hierachy)&#xff0c;即不同类型的内存具有不同的容量和访问延迟&#xff08;可以…

从新开始,轻松搭建陪玩系统!线下线上陪玩平台搭建系统,选购线下线上陪玩小程序APP系统时,这点不能忽视!

在搭建线下线上陪玩平台系统&#xff0c;以及选购线下线上陪玩小程序APP系统时&#xff0c;以下几点是至关重要的&#xff0c;不容忽视&#xff1a; 一、明确需求与规划 目标用户定位&#xff1a; 确定陪玩系统的目标用户群体&#xff0c;如游戏玩家、技能服务需求者等。 功能…

使用C# winform 开发一个任务管理器

前言 为啥要开发这个呢 ,系统自带的关闭有些程序就关不了,它有好多线程,你关一其中一个它后台又重新开了一个,关不完,使用我这个呢 就把所有相同名称进程看作一个,一关就关 下载软件 v1 Form1.cs using System; using System.Windows.Forms;namespace TaskMaster {public pa…

learn C++ NO.21——AVL树

简单介绍一下AVL树 AVL树是一种自平衡的二叉搜索树&#xff08;Balanced Binary Search Tree, BBST&#xff09;&#xff0c;由俄罗斯数学家G. M. Adelson-Velsky和E. M. Landis在1962年发明&#xff0c;因此以其名字首字母命名。AVL树通过保持任何节点的两个子树的高度最大差…

养生健康:从日常细节中寻觅长寿之钥

养生健康&#xff1a;从日常细节中寻觅长寿之钥 在这个快节奏的时代&#xff0c;健康似乎成了一种奢侈品&#xff0c;但实则不然。养生之道&#xff0c;不在于繁复的仪式&#xff0c;而在于融入日常的点点滴滴。今天&#xff0c;就让我们一起探讨几个简单却至关重要的养生习惯…

N1从安卓盒子刷成armbian

Release Armbian_noble_save_2024.10 ophub/amlogic-s9xxx-armbian (github.com) armbian下载&#xff0c;这里要选择905d adb 下载地址 https://dl.google.com/android/repository/platform-tools-latest-windows.zip 提示信息 恩山无线论坛 使用usb image tool restet a…

Java项目实战II基于Java+Spring Boot+MySQL的高校学科竞赛平台

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着高等教…

【Vue】Vue 快速教程

Vue tutorial 参考&#xff1a;教程 | Vue.js (vuejs.org) 该教程需要前置知识&#xff1a;HTML, CSS, JavaScript 学习前置知识&#xff0c;你可以去 MDN Vue framework 是一个 JavaScript framework&#xff0c;以下简称 Vue&#xff0c;下面是它的特点 声明式渲染&#xff…