《CUDA编程》6.CUDA的内存组织

news2025/1/17 21:40:48

前面几章讲了一些编写高性能CUDA程序的要点,但还有很多其他需要注意的,其中最重要的就是合理的使用设备内存

1 CUDA的内存组织简介

现代计算机中的内存存在一种组织结构(hierachy),即不同类型的内存具有不同的容量和访问延迟(可以理解为处理器等待内存的时间)。一般来说,延迟低的内存容量小,延迟高的内存容量大。

下表是CUDA设备(显卡)中的几种内存和主要特征
在这里插入图片描述
下图是组织示意图和数据移动发方向图
在这里插入图片描述

2 不同内存的简介

2.1 全局内存

全局内存(global memory): 核函数中的所有线程都能够访问。

特点:

  1. 容量大: 通常是GPU上最大的内存区域。
  2. 访问延迟高: 相比于其他内存,访问延迟较高。
  3. 全局可见: 对所有线程和线程块可见,可在核函数中自由读取、可读可写。
  4. 持久性: 全局内存中的数据在内核函数执行期间保持不变,可以跨多个内核调用使用。

全局内存主要是为核函数提供数据,并在主机和设备、设备和设备之间传输数据

全局内存的生命周期由主机端决定,所以:

  • cudaMalloc()函数是主机在设备的全局内存中分配一段指定大小的内存区域
  • cudaFree()函数是主机把该内存释放

以上所说的全局内存称为线性内存(linear memory),还有一种不对用户透明的内存称为CUDA Array,专为纹理拾取服务。

和C++函数一样,cudaMalloc()函数是动态地分配内存,CUDA中也允许使用静态全局内存变量,定义方法如下:

  • __device__ T x; 定义单个变量
  • __device__ T y[N]; 定义固定长度地数组

其中,修饰符 __ device __ 说明该变量是设备中的变量,而不是主机中的变量;T 是变量的 类型;

在核函数中,可以直接访问静态全局内存变量,不需要以参数的形式传入;注意,主机函数无法直接访问,只能用cudaMemcpyToSymbol()cudaMemcpyFromSymbol()在主机内存和静态全局内存之间传输数据,下面是两个函数的结构:

①将主机数据复制到静态全局内存中
在这里插入图片描述
②将静态全局内存数据复制到主机中
在这里插入图片描述
之后会讨论一种利用静态全局内存加速程序的技巧,现在给出使用例子:

#include <cuda.h>
#include <cuda_runtime.h>
#include "error_check.cuh"

__device__ int d_x = 1;
__device__ int d_y[2];

__global__ void cudaOut(void) {
	d_y[0]+= d_x;
	d_y[1]+= d_x;
	printf("Device:  d_x = %d,d_y[0]=%d, d_y[1]=%d\n",d_x,d_y[0], d_y[1]);
	printf("\n");
}

int main(void) {
	int h_y[2] = { 10,20 };
	CHECK(cudaMemcpyToSymbol(d_y, h_y, sizeof(int) * 2));

	cudaOut<<<1,1>>>();
	CHECK(cudaDeviceSynchronize());

	CHECK(cudaMemcpyFromSymbol(h_y, d_y, sizeof(int) * 2));
	printf("Host:  h_y[0]=%d, h_y[1]=%d\n", h_y[0], h_y[1]);

	return 0;
}

输出结果是:
在这里插入图片描述
可以看到主机数据和静态全局内存变量中的数据交流成功。

2.2 常量内存

常量内存(constant memory): 是有常量缓存的全局内存,数量有限,最多有 64 KB。

特点:

  1. 容量小: 通常不超过64KB。
  2. 访问延迟低: 由于常量内存是通过缓存来访问的,当缓存命中时,其访问速度可以非常快,前提是一个线程束中的线 程(一个线程块中相邻的 32 个线程)要读取相同的常量内存数据。
  3. 全局可见性: 对整个设备上的所有线程都是可见的,即所有的线程块都可以访问。
  4. 只读性: 仅可读、不可写。

常量内存非常适合存储那些在内核执行期间不需要更改且被频繁访问的数据,例如转换矩阵、查找表等。

全局内存不能直接通过cudaMalloc()进行分配,只能通过cudaMemcpyToSymbol()cudaMemcpyToSymbolAsync()函数将数据从主机内存复制到设备的常量内存中,当程序结束时,CUDA驱动会自动回收该资源。

定义一个常量内存是在核函数外面用__constant__修饰符,下面是定义单个变量、数组、结构体的代码:

注意:核函数外定义的常量内存,在核函数中可以直接调用,不需要通过参数传导进去

#include <iostream>
#include <cuda_runtime.h>
#include "error_check.cuh"

// 定义常量内存中的数组大小
const int N = 4;
// 定义结构体
struct ConstStruct {
    float array[N];
    float singleValue;
};

// 核函数原型声明
__global__ void kernelFunction(float* d_result, float* d_result_s);

// 常量内存变量声明
__constant__ float d_constArray[N];    // 数组
__constant__ float d_singleValue;      // 单个变量
__constant__ ConstStruct d_constStruct; // 结构体

int main() {
    // 在主机上准备数据
    float h_array[N] = { 0 };
    ConstStruct h_constStruct;

    for (int i = 0; i < N; ++i) {
        h_array[i] = 2.1;
        h_constStruct.array[i] = 3.1f;
    }
    float h_singleValue = 1.1;
    h_constStruct.singleValue = 2.1f;

    // 将数据从主机复制到常量内存
    CHECK(cudaMemcpyToSymbol(d_constArray, h_array, N * sizeof(float)));
    CHECK(cudaMemcpyToSymbol(d_singleValue, &h_singleValue, sizeof(float)));
    CHECK(cudaMemcpyToSymbol(d_constStruct, &h_constStruct, sizeof(ConstStruct)));

    // 准备设备上的输出数组
    float* d_result;
    float* d_result_s;
    cudaMalloc(&d_result, N * sizeof(float));
    cudaMalloc(&d_result_s, N * sizeof(float));

    // 启动核函数
    kernelFunction << <1, N >> > (d_result, d_result_s);

    // 检查是否有错误
    CHECK(cudaGetLastError());

    // 将结果从设备复制回主机
    float h_result[N];
    float h_result_s[N];
    cudaMemcpy(h_result, d_result, N * sizeof(float), cudaMemcpyDeviceToHost);
    cudaMemcpy(h_result_s, d_result_s, N * sizeof(float), cudaMemcpyDeviceToHost);

    // 输出结果
    for (int i = 0; i < N; ++i) {
        std::cout << "Result[" << i << "] = " << h_result[i] << std::endl;
        std::cout << "S_Result[" << i << "] = " << h_result_s[i] << std::endl;
    }

    // 清理资源
    cudaFree(d_result);
    cudaFree(d_result_s);

    return 0;
}

// 定义核函数
__global__ void kernelFunction(float* d_result, float* d_result_s) {
    int idx = threadIdx.x;
    if (idx < N) {
        // 从常量内存中读取常量数组和单个值,将结果存入 d_result
        d_result[idx] = d_constArray[idx] + d_singleValue;

        // 从常量内存中的结构体读取数据,将数组中的值和单个值相加,并存入 d_result_s
        d_result_s[idx] = d_constStruct.array[idx] + d_constStruct.singleValue;
    }
}

2.3 纹理内存

纹理内存(Texture Memory): 具有缓存的全局内存。

特点:

  1. 容量较大: 因为实际上它们是全局内存的一部分,所以容量还是比较大。
  2. 主要用于只读: 对写操作支持非常有限,更适合读操作
  3. 全局可见
  4. 访问速度: 有专门的缓存优化,比全局内存快,适用于图像处理、计算机图形学等需要插值和边界处理的场景。

注意:使用__ldg(const T* addr)函数可以把某些只读的全局内存数据通过缓存,到达使用纹理内存的加速效果,后面会讨论该函数

2.4 表面内存

表面内存(surface memory): 具有缓存的全局内存。

特点:

  1. 容量较大: 因为实际上它们是全局内存的一部分,所以容量还是比较大。
  2. 支持读写: 可以在核函数中直接修改表面内存中的数据。
  3. 全局可见
  4. 访问速度: 有专门的缓存优化,比全局内存快,用于需要频繁读写多维数据的应用,如图像处理和数据流处理。

2.5 寄存器

寄存器内存(Register Memory) 是所有内存中访问速度最快延迟最低的,但内存有限。

特点

  1. 容量有限: 寄存器的数量是有限的,如果一个线程使用的寄存器数量超过了限制,编译器会自动将部分数据溢出到局部内存(Local Memory),这会导致性能下降。
  2. 高速访问: 寄存器内存的访问速度非常快,通常只需要一个时钟周期。
  3. 私有性: 每个线程都有自己的寄存器集合,不能被其他线程访问,仅仅被一个线程可见。
  4. 可读可写
  5. 自动管理: 寄存器内存由编译器自动管理,不需要手动指定哪些变量存储在寄存器中。编译器会根据变量的使用频率和生命周期来决定哪些变量应该存储在寄存器中。
  6. 生命周期: 寄存器的生命周期也与所属线程的生命周期 一致,从定义它开始,到线程消失时结束。

在核函数中定义的不加任何限定符的变量一般来说就存放于寄存器中。

以前提到过的各种内建变量,如 gridDim、blockDim、blockIdx、threadIdx 及 warpSize 都保存在特殊的寄存器中

例如下列代码

const int n = blockDim.x * blockIdx.x + threadIdx.x;

这里的 n 就是一个寄存器变量。

寄存器的数量和GPU相关,下图是一些不同计算能力和寄存器的指标:
在这里插入图片描述

2.6 局部内存

局部内存(Local Memory): 当线程使用的寄存器数量超过限制时,编译器会将部分数据溢出到局部内存中。局部内存实际上位于全局内存中,但具有特定的访问特性和优化。

特点:

  1. 访问延迟: 由于局部内存位于全局内存中,访问局部内存的延迟较高
  2. 私有性: 局部内存是每个线程独有的,不能被其他线程访问。
  3. 容量: 每个线程最多能使用高达 512 KB 的局部内存,但使用 过多会降低程序的性能。

2.7 共享内存

共享内存(Shared Memory): 是一种非常重要的内存类型,它位于每个SM中.

特点:

  1. 高速访问: 共享内存的访问速度非常快,通常只需要几个时钟周期。
  2. 线程块内共享: 共享内存只能被同一个线程块中的线程访问,不能跨线程块共享。
  3. 有限容量: 每个SM的共享内存容量是有限的,具体容量取决于GPU的架构。
  4. 手动管理: 共享内存需要程序员手动分配和管理

共享内存的主要作用是减少对全局内存的访问,或 者改善对全局内存的访问模式。

2.8 L1、L2缓存

从费米架构开始,有了 SM 层次的 L1 缓存(一级缓存)和设备(一个设备有多个 SM) 层次的 L2 缓存(二级缓存)。它们主要用来缓存全局内存和局部内存的访问,减少延迟。

从编程的角度来看,共享内存是可编程的缓存(共享内存的使用完全由用户操控),而 L1 和 L2 缓存是不可编程的缓存(用户最多能引导编译器做一些选择)。

对某些架构来说,还可以针对单个核函数或者整个程序改变 L1 缓存和共享内存的比例:

在这里插入图片描述

3 SM及其占有率

SM(Streaming Multiprocessor,流多处理器)是GPU的基本计算单元。每个SM包含多个流处理器(Streaming Processors,SP),这些流处理器负责执行实际的计算任务。

3.1 SM的构成

一个SM包含以下内容:

  • 一定数量的寄存器
  • 一定数量的共享内存
  • 常量内存的缓存
  • 纹理和表面内存的缓存
  • L1 缓存
  • 两个(计算能力 6.0)或 4 个(其他计算能力)线程束调度器(warp scheduler),用于
    在不同线程的上下文之间迅速地切换,以及为准备就绪的线程束发出执行指令。
  • 执行核心,包括:
    – 若干整型数运算的核心(INT32)。
    – 若干单精度浮点数运算的核心(FP32)。
    – 若干双精度浮点数运算的核心(FP64)。
    – 若干单精度浮点数超越函数(transcendental functions)的特殊函数单元(Special Function Units,SFUs)。
    – 若干混合精度的张量核心(tensor cores,由伏特架构引入,适用于机器学习中的 低精度矩阵计算)。

3.2 SM的占有率

SM的占有率: 在指定的时间内,SM中的流处理器(SP)被有效利用的程度。高SM占有率意味着更多的计算资源被充分利用,从而提高整体性能,一般来说,要尽量让 SM 的占有率不小于 某个值,比如 25%,才有可能获得较高的性能。

要分析 SM 的理论占有率(theoretical occupancy),还需要知道两个指标:

  • 一个 SM 中最多能拥有的线程块个数为 Nb = 16(开普勒架构和图灵架构)或者 Nb = 32(麦克斯韦架构、帕斯卡架构和伏特架构);
  • 一个 SM 中最多能拥有的线程个数为 Nt = 2048(从开普勒架构到伏特架构)或者 Nt = 1024(图灵架构),所以之前强调一个线程块(无论几维的)中的线程数不能超 过 1024。

下面在并行规模足够大(即核函数执行配置中定义的总线程数足够多)的前提下分几 种情况来分析 SM 的理论占有率:

①寄存器和共享内存使用量很少的情况:

  • SM 的占有率完全由执行配置中的线程块大小决定。关于线程块大小,之前总是用 128。这是因为SM中线程的执行是以线程束为单位的,所以最好将线程块大小取为线程束大小(32 个线 程)的整数倍。
    例如,假设将线程块大小定义为 100,那么一个线程块中将有 3 个完 整的线程束(一共 96 个线程)和一个不完整的线程束(只有 4 个线程)。在执行核函数中的指令时,不完整的线程束花的时间和完整的线程束花的时间一样,这就无形中浪费了计算资源,所以建议将线程块大小取为 32 的整数倍。

②有限的寄存器个数的情况:

  • 假设每个SM有 T T T 个寄存器
  • 假设每个线程需要 R R R 个寄存器
  • 假设每个线程块有 B B B 个线程。

所以

  • 每个线程块的寄存器总数= R × B R×B R×B
  • 每个SM可以容纳的线程块数量= ⌊ T / R × B ⌋ ⌊ T / R×B ⌋ T/R×B,(向下取整)

又已知

  • 每个线程块的线程束数量= ⌈ B / 32 ⌉ ⌈ B / 32⌉ B/32

所以
在这里插入图片描述
SM占有率计算公式如下:

在这里插入图片描述

③有限的共享内存对占有率的约束情况: 略,后面会详细介绍。

以 上 单 独 分 析 了 线 程 块 大 小、 寄 存 器 数 量 及 共 享 内 存 数 量 对 SM 占 有 率 的 影 响。 一 般 情 况 下, 需 要 综 合 以 上 三 点 分 析。 在 CUDA 工 具 箱 中, 有 一 个 名 为 CUDA_Occupancy_Calculator.xls 的 Excel 文 档, 可 用 来 计 算 各 种 情 况 下 的 SM 占有率,感兴趣的读者可以去尝试使用。

注: 用编译器选项 --ptxas-options=-v 可以报道每个核函数的寄存器使 用数量。CUDA 还提供了核函数的 launch_bounds() 修饰符和 --maxrregcount= 编 译选项来让用户分别对一个核函数和所有核函数中寄存器的使用数量进行控制。

4 用CUDA运行时API函数查询设备

该段介绍用 CUDA 运行时 API 函数查询所用 GPU 的规格 ,可以通过以下代码查看显卡的信息:

#include <iostream>
#include <cuda_runtime.h>
#include "error_check.cuh"

int main(int argc, char* argv[]) {
	int device_id = 0;//如果你不止一个显卡,可以切换ID,输出不同显卡的信息
	if (argc > 1) device_id = atoi(argv[1]);
	CHECK(cudaSetDevice(device_id));

	cudaDeviceProp prop;
	CHECK(cudaGetDeviceProperties(&prop, device_id));

	printf("Device id: %d\n", device_id);
	printf("Device name: %s\n", prop.name);
	printf("Compute capability: %d.%d\n", prop.major, prop.minor);
	printf("Amount of global memory: %g GB\n", prop.totalGlobalMem / (1024.0 * 1024 * 1024));
	printf("Amount of constant memory: %g KB\n", prop.totalConstMem / 1024.0);
	printf("Maximum grid size: %d %d %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
	printf("Maximum block size: %d %d %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
	printf("Number of SMs: %d\n", prop.multiProcessorCount);
	printf("Maximum amount of shared memory per block: %g KB\n", prop.sharedMemPerBlock / 1024.0);//每个线程块可以使用的最大共享内存
	printf("Maximum amount of shared memory per SM: %g KB\n", prop.sharedMemPerMultiprocessor / 1024.0);//个SM可以分配的最大共享内存总量
	printf("Maximum number of registers per block: %d K\n", prop.regsPerBlock / 1024);//每个线程块可以使用的最大寄存器数量
	printf("Maximum number of registers per SM: %d K\n", prop.regsPerMultiprocessor / 1024);//每个SM可以分配的最大寄存器总量
	printf("Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock);
	printf("Maximum number of threads per SM: %d\n", prop.maxThreadsPerMultiProcessor);//每个SM可以同时运行的最大线程数量
	return 0;
}

输出结果如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2198694.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从新开始,轻松搭建陪玩系统!线下线上陪玩平台搭建系统,选购线下线上陪玩小程序APP系统时,这点不能忽视!

在搭建线下线上陪玩平台系统&#xff0c;以及选购线下线上陪玩小程序APP系统时&#xff0c;以下几点是至关重要的&#xff0c;不容忽视&#xff1a; 一、明确需求与规划 目标用户定位&#xff1a; 确定陪玩系统的目标用户群体&#xff0c;如游戏玩家、技能服务需求者等。 功能…

使用C# winform 开发一个任务管理器

前言 为啥要开发这个呢 ,系统自带的关闭有些程序就关不了,它有好多线程,你关一其中一个它后台又重新开了一个,关不完,使用我这个呢 就把所有相同名称进程看作一个,一关就关 下载软件 v1 Form1.cs using System; using System.Windows.Forms;namespace TaskMaster {public pa…

learn C++ NO.21——AVL树

简单介绍一下AVL树 AVL树是一种自平衡的二叉搜索树&#xff08;Balanced Binary Search Tree, BBST&#xff09;&#xff0c;由俄罗斯数学家G. M. Adelson-Velsky和E. M. Landis在1962年发明&#xff0c;因此以其名字首字母命名。AVL树通过保持任何节点的两个子树的高度最大差…

养生健康:从日常细节中寻觅长寿之钥

养生健康&#xff1a;从日常细节中寻觅长寿之钥 在这个快节奏的时代&#xff0c;健康似乎成了一种奢侈品&#xff0c;但实则不然。养生之道&#xff0c;不在于繁复的仪式&#xff0c;而在于融入日常的点点滴滴。今天&#xff0c;就让我们一起探讨几个简单却至关重要的养生习惯…

N1从安卓盒子刷成armbian

Release Armbian_noble_save_2024.10 ophub/amlogic-s9xxx-armbian (github.com) armbian下载&#xff0c;这里要选择905d adb 下载地址 https://dl.google.com/android/repository/platform-tools-latest-windows.zip 提示信息 恩山无线论坛 使用usb image tool restet a…

Java项目实战II基于Java+Spring Boot+MySQL的高校学科竞赛平台

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着高等教…

【Vue】Vue 快速教程

Vue tutorial 参考&#xff1a;教程 | Vue.js (vuejs.org) 该教程需要前置知识&#xff1a;HTML, CSS, JavaScript 学习前置知识&#xff0c;你可以去 MDN Vue framework 是一个 JavaScript framework&#xff0c;以下简称 Vue&#xff0c;下面是它的特点 声明式渲染&#xff…

音频进阶学习三——离散时间信号与系统

文章目录 前言一、离散时间信号1.基本信号2.离散时间信号的分类3.离散时间信号的简单运算4.单位脉冲在运算中的作用 二、离散时间系统1.什么是离散时间系统2.离散系统的分类 总结 前言 前面博主介绍了信号中的连续时间信号和离散时间信号&#xff0c;数字信号也是离散时间信号…

1.一、MyBatis入门

一、MyBatis入门 我们做为后端程序开发人员&#xff0c;通常会使用Java程序来完成对数据库的操作。Java程序操作数据库&#xff0c;现在主流的方式是&#xff1a;Mybatis。 一、什么是MyBatis? MyBatis官网的解释&#xff1a; MyBatis 是一款优秀的持久层框架&#xff0c;它…

基于Zabbix进行服务器运行情况监测

文章目录 引言I Zabbix主要构成下载并安装Zabbix被监控主机安装zabbix agent创建被监控主机报警设置II 常见问题cannot use database "zabbix": its "users" table is empty (is this the Zabbix proxy database?)重置 Zabbix Web 界面密码Zabbix agent i…

【c++】初步了解类和对象2

1、类的作用域 类定义了一个新的作用域&#xff0c;类的所有成员都在类的作用域中。在类体外定义成员时&#xff0c;需要使用 :: 作用域操作符指明成员属于哪个类域。 如图&#xff0c;此时在类内声明了函数firstUniqChar()&#xff0c;在类外进行了函数体的具体定义。 但是却…

【成神之路】Ambari实战-050-UI-如何通过配置修改ambari样式

在Ambari中&#xff0c;通过自定义UI控件&#xff08;Widget&#xff09;&#xff0c;你可以灵活调整配置项的展现形式&#xff0c;使其更符合实际需求。这篇文章将详细介绍各种控件的使用&#xff0c;并提供代码示例和实际应用场景&#xff0c;帮助你成为UI配置的行家&#xf…

国家发改委等部门划时间点:到2026年底基本建成国家数据标准体系

摘要 【国家发改委等部门划时间点&#xff1a;到2026年底基本建成国家数据标准体系】10月8日&#xff0c;国家发改委等部门联合印发《国家数据标准体系建设指南》。《建设指南》提出计划&#xff0c;到2026年底&#xff0c;基本建成国家数据标准体系&#xff0c;围绕数据流通利…

jmeter学习(7)beanshell

beanshell preprocessor 发送请求前执行 beanshell postprocessor 发送请求前执行 获取请求相关信息 String body sampler.getArguments().getArgument(0).getValue(); String url sampler.getPath(); 获取响应报文 String responseprev.getResponseDataAsString(); 获…

应急响应:LinuxWindows实战排查

目录 应急响应 介绍&#xff1a; 应急流程&#xff1a; 抑制阶段&#xff1a; 对于Linux&#xff0c;一些常见的排查命令&#xff1a; 对于Windows&#xff0c;常见的排查命令&#xff1a; Windows应急&#xff08;一&#xff09; Windows应急&#xff08;二&#xff0…

C++ string类(超详细一次性讲解)(上)

1. 为什么学习string类&#xff1f; 1.1 C语言中的字符串 C语言中&#xff0c;字符串是以 \0 结尾的一些字符的集合&#xff0c;为了操作方便&#xff0c;C标准库中提供了一些str系列的库函数&#xff0c;但是这些库函数与字符串是分离开的&#xff0c;不太符合OOP的思想&…

Python OpenCV精讲系列 - 三维重建深入理解(十七)

&#x1f496;&#x1f496;⚡️⚡️专栏&#xff1a;Python OpenCV精讲⚡️⚡️&#x1f496;&#x1f496; 本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计&#xff0c;从基础概念入手&#xff0c;逐步深入到图像处理、特征检测、物体识…

细菌实例分割系统源码&数据集分享

细菌实例分割系统源码&#xff06;数据集分享 [yolov8-seg-EfficientFormerV2&#xff06;yolov8-seg-SPPF-LSKA等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Glob…

系分-数据库总结

历年试题2024年05月试题 BCN范式&#xff0c;模式分解&#xff0c;触发器类型2023年05月试题 NoSQL基本特点&#xff0c;NoSQL对比&#xff0c;混合数据库2022年05月试题4 两段锁&#xff0c;事务并发&#xff0c;数据一致&#xff0c;本地事务发布20…

生命的最高境界(深度好文)?

予人玫瑰&#xff0c;手有余香。 生命的最高境界&#xff0c;就一个字&#xff1a;给。 初级的快乐&#xff0c;是放任&#xff1b;中级的快乐&#xff0c;是自律&#xff1b;高级的快乐&#xff0c;是给予。 予人玫瑰&#xff0c;手有余香。 学会“给”&#xff0c;是我们一…