一 RAG与文本分块
1.1 为什么要文档分块
我们知道,大模型在预训练阶段获取的知识是有限的,一般需要数据增强模块引入外部知识库,通过知识检索的方式搜索于用户提问相关的知识,这也是RAG相关应用架构出现的原因。但这又引申出另一个问题,外部知识文档往往比较长,可能是包含几十页甚至数百页的内容,如果直接使用会存在以下问题
-
1.大模型处理的上下文长度有限:大模型在预训练过程都有上下文长度限制,如果超过长度限制大模型会将超出部分丢弃,从而影响回答的性能表现。(注:目前很多大模型已经支持192K甚至更大的超长上下文窗口+搜索增强知识库,但基于成本和性能考虑,大文档分chunk依然是RAG方案必须包含的环节)。
-
2.语义杂揉不利于任务检索:长文档中各个片段的语义之间可能存在较大的差异,如果当成一个整体来做知识检索会存在语义的杂揉,应当将长文档切分成更多的小块,促使每个小块内部表意一致,块之间表意存在多样性,从而更充分的发挥知识检索的作用
所以我们需要根据一定策略将文本切分为小块,以便适应大模型的上下文窗口,同时提高知识检索的精度。
1.2 分块的目标
文本分块不是盲目的切分,而是必须在不影响或尽量降低对整体效果影响的前提下进行。所以文本分块(chunk)**最核心的目的就是把相同语义的token聚集在一起,不同语义的token互相分开,利于后续的retrieve和rerank。**举个例子:我们有一个word文档,分为多个段落,每个段落都是一个问题的问答对。那么显然把一个问答对作为一个chunk划分是最理想的结果。
二 常用的文本分块技术方案
常见chunk方案有按照字符chunk、按token、按段落、递归划分、语义划分、代理划分等。Langchain作为一个 LLM 协调框架,内置了一些用于分块以及加载文档的工具,提供了很多可以开箱即用的chunk方法:
CharacterTextSplitter
RecursiveCharacterTextSplitter
Split by tokens
Semantic Chunking
HTMLHeaderTextSplitter
MarkdownHeaderTextSplitter
RecursiveJsonSplitter
Split Cod
由于相关的代码解说文章已经很多,这里不再赘述,只以RecursiveCharacterTextSplitter、SentenceSplitter和HTMLHeaderTextSplitter为例:
2.1 RecursiveCharacterTextSplitter
基于字符数来递归地分割文本。每个块都保持在指定的长度以下,这对于具有自然段落或句子间断的文档特别有用,确保了块的可管理性和易于处理性,而不会丢失文档的固有结构。
Langchain中的递归字符文本分割器方法根据字符数将文本分割成块,以确保每个块低于指定的长度。这种方法有助于保持文档中段落或句子的自然断开。
2.2 SentenceSplitter
SentenceSplitter是在句子边界上分割文本,这种方法能够保持文本的上下文完整性。句子通常代表完整的思想,这使得这种方法非常适合那些对内容有连贯理解的场景。
2.3 HTMLHeaderTextSplitter
HTMLHeaderTextSplitter是一个网页代码分块器,它根据 HTML 元素拆分文本,并将相关元数据分配给分块内的每个标头。它可以返回单个分块或将具有相同元数据的元素组合在一起,以保持语义分组并保留文档的结构上下文。此拆分器可与分块管道中的其他文本拆分器结合使用。
三 自实现的文本chunk方法
尽管LangChain和llamaIndex都已经提供了文本Chunk方法,但不幸的是这两者提取语义embedding用的都是openAI的接口,要收费不说,大陆地区还面临被封API的风险,更关键的是在很多企业内根本不允许使用。所以我们只能参考LangChain中各方法的实现原理,自行开发和调试文本chunk方法。
四 从文档角度出发的RAG技术方案
从文档角度出发,RAG流程中的各个主要环节如下:
关键概念说明:
RAPTOR:RAPTOR模型提出了一种创新的策略。它通过递归地进行文本片段的 向量化**、聚类和摘要生成,构建了一个树状索引结构** 这种结构不仅捕捉了文档的高层次主题,还保留了低层次的细节,允许基于语义相似性而非仅仅是文本顺序对节点进行分组。这样的树状结构使得RAPTOR能够在不同的抽象层次上加载文档的上下文片段,从而有效地回答不同层次的问题。
GraphRAG:2024年4月微软推出GraphRAG,并于7月2日开源。GraphRAG仍然沿袭了RAG的思路,即通过检索来增强模型的准确性。不过,与RAG不同的是,GraphRAG还引入了“知识图谱”(Knowledge Graph)技术,以增强模型的“检索”能力,以实现对复杂信息的高效和可靠检索,从而提高LLM问答系统对于复杂信息的答案生成的准确性。GraphRAG示意图如下:
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓