第二十二天|回溯算法| 理论基础,77. 组合(剪枝),216. 组合总和III,17. 电话号码的字母组合

news2024/12/27 17:23:35

回溯算法理论基础

1.题目分类

2.理论基础

  • 什么是回溯算法

回溯和递归是相辅相成的。

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

  • 回溯法的效率

回溯法其实就是暴力查找,并不是什么高效的算法。

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

  • 回溯法可以解决几类问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

3.回溯法模板

回溯法解决的问题都可以抽象为树形结构(N叉树)。

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

回溯三部曲:

  • 回溯函数模板返回值以及参数

回溯算法中函数返回值一般为void。先写逻辑,然后需要什么参数,就填什么参数。

  • 回溯函数终止条件

一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

  • 回溯搜索的遍历过程

for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

补充一个JAVA基础知识

什么时候用ArrayList什么时候用LinkedList

1. 存储结构与基本概念

  • ArrayList:

    • 底层是基于数组的数据结构。
    • 元素是连续存储的,这意味着可以通过索引快速访问元素。
    • 如果数组容量不足时,ArrayList会创建一个更大的数组并将原数组的元素复制到新数组中。
  • LinkedList:

    • 底层是基于双向链表的数据结构。
    • 每个节点存储元素值及前一个和后一个节点的引用。
    • 元素在内存中不必是连续的,增删节点时不需要像ArrayList那样复制数组。

2. 选择依据

  • 使用ArrayList的场景

    • 需要频繁访问元素:由于ArrayList基于数组结构,可以通过索引在O(1)时间内访问任意元素,因此如果你的主要操作是访问而不是插入和删除,ArrayList会更适合。
    • 元素数量较多,但插入和删除操作较少ArrayList在添加元素时,只要不超出容量,添加时间是O(1),但当数组需要扩容时,时间复杂度会变为O(n)。
    • 遍历操作较多ArrayList因为底层是连续内存存储,遍历时缓存命中率较高,因此在遍历时性能会比LinkedList好。
  • 使用LinkedList的场景

    • 需要频繁的插入和删除操作LinkedList在头部或中间插入/删除元素时,不需要移动其他元素,只需要调整指针即可,效率更高。如果你的操作集中在头部或尾部,LinkedList会表现更好。
    • 需要在列表的任意位置频繁插入/删除:在这种情况下,LinkedList可以通过调整节点的指向来高效完成操作,而ArrayList则需要移动元素来维护数组的连续性。
    • 存储的元素数量不大且不需要频繁访问LinkedList的随机访问时间是O(n),因此如果需要频繁通过索引访问元素,LinkedList性能较差。

3. 总结选择

  • 如果主要是读操作(访问元素):选择ArrayList
  • 如果主要是写操作(插入、删除),并且特别是在头部或中间:选择LinkedList
  • 如果数据规模大,并且需要高效的遍历:ArrayList更好。
  • 如果数据规模小,并且操作模式比较多变:LinkedList的灵活性更好。

4. 示例应用场景

  • 使用ArrayList:

    List<String> arrayList = new ArrayList<>();
    arrayList.add("a");  // O(1) - 添加元素
    arrayList.get(0);    // O(1) - 通过索引访问
  • 使用LinkedList:

    LinkedList<String> linkedList = new LinkedList<>();
    linkedList.addFirst("a");  // O(1) - 在头部插入
    linkedList.removeFirst();  // O(1) - 从头部删除

77. 组合

本题是回溯法的经典题目。

把组合问题抽象为如下树形结构:

图中每次搜索到了叶子节点,我们就找到了一个结果。

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

未剪枝优化

回溯法三部曲

  • 递归函数的返回值以及参数
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)

函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。

然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。startIndex 就是防止出现重复的组合。需要startIndex来记录下一层递归,搜索的起始位置。

  • 回溯函数终止条件

path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。

此时用result二维数组,把path保存起来,并终止本层递归。

if (path.size() == k) {
    result.push_back(path);
    return;
}
  • 单层搜索的过程

回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。

for循环每次从startIndex开始遍历,然后用path保存取到的节点i。

可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

整体代码如下:

    class Solution {
        List<List<Integer>> result = new ArrayList<>();
        LinkedList<Integer> path = new LinkedList<>();

        public List<List<Integer>> combine(int n, int k) {
            // 未剪枝优化
            backtracking(n, k, 1);
            return result;
        }

        // 递归的每一层在执行完所有可能的路径(所有从startIndex到n的i)之后,会自然退出当前循环,并结束当前的backtracking调用。
        public void backtracking(int n, int k, int startIndex) {
            if (path.size() == k) {
                result.add(new ArrayList<>(path));
                return;
            }
            for (int i = startIndex; i <= n; i++) {
                path.add(i);
                backtracking(n, k, i + 1);
                // 在递归调用返回之后,path.removeLast()会将最后添加的元素移除,以准备下一轮循环中添加不同的元素。
                path.removeLast();
            }
        }
    }

剪枝优化

剪枝的目标是减少不必要的递归调用,避免继续探索那些不可能满足条件的路径,从而提高效率。

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

这么说有点抽象,如图所示:

可以剪枝的地方就在递归中每一层的for循环所选择的起始位置

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了

优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

为什么是 n - (k - path.size()) + 1(重点理解一下)

  • n - (k - path.size()) + 1的含义是:

    • k - path.size():当前还需要选择的元素数量。
    • n - (k - path.size()):表示当前可选择元素的最大起始位置,即从这个位置开始,剩余的元素刚好足够填充到k个。
    • +1是为了让i的范围包含这个起始位置。
  • 例如,如果n = 5k = 3,并且当前path.size() = 1,也就是已经选择了一个元素,还需要选择2个元素。

    • 此时,k - path.size() = 3 - 1 = 2
    • n - (k - path.size()) = 5 - 2 = 3
    • 所以,i的最大值是3 + 1 = 4
    • 换句话说,从i = 4开始时,只有45两个元素可选,这正好可以凑齐3个元素的组合。

剪枝示例进一步理解:

假设n = 5k = 3,我们在不同的递归层次下看i的取值范围:

  • path.size() = 0(还没选任何元素)时:

    • 需要选k = 3个元素。
    • 可选择范围是:i <= 5 - (3 - 0) + 1 = 3,所以i可以从13
    • 选择1时,递归进入下一层。
  • path.size() = 1(已选择1)时:

    • 需要再选2个元素。
    • 可选择范围是:i <= 5 - (3 - 1) + 1 = 4,所以i可以从24
  • path.size() = 2(已选择1, 2)时:

    • 需要再选1个元素。
    • 可选择范围是:i <= 5 - (3 - 2) + 1 = 5,所以i可以从35
  • 以此类推,当path.size() == k时,就停止递归,将结果存入result

优化后整体代码如下:

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> combine(int n, int k) {
        combineHelper(n, k, 1);
        return result;
    }

    /**
     * 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex
     * @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
     */
    private void combineHelper(int n, int k, int startIndex){
        //终止条件
        if (path.size() == k){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){
            path.add(i);
            combineHelper(n, k, i + 1);
            path.removeLast();
        }
    }
}

216. 组合总和III

本题就是在77基础上多了一个求和的限制罢了,简单。

注意:处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减

这里我自己写的时候漏了一个sum -= i的回溯

    class Solution {
        List<List<Integer>> result = new ArrayList<>();
        LinkedList<Integer> path = new LinkedList<>();
        int sum = 0;

        public List<List<Integer>> combinationSum3(int k, int n) {
            backTrackingSum(k, n, 1);
            return result;
        }

        private void backTrackingSum(int k, int n, int startIndex) {
            if (sum > n) return; // 剪枝
            if (path.size() == k) {
                if (sum == n) {
                    result.add(new ArrayList<>(path));
                }
                return;
            }
            // 剪枝 9 - (k - path.size()) + 1
            for (int i = startIndex; i <= 10 - (k - path.size()); i++) {
                path.add(i);
                sum += i;
                backTrackingSum(k, n, i + 1);
                sum -= i;  // 回溯
                path.removeLast(); //回溯
            }
        }
    }
// 上面剪枝 i <= 9 - (k - path.size()) + 1; 如果还是不清楚
// 也可以改为 if (path.size() > k) return; 执行效率上是一样的
class Solution {
    LinkedList<Integer> path = new LinkedList<>();
    List<List<Integer>> ans = new ArrayList<>();
    public List<List<Integer>> combinationSum3(int k, int n) {
        build(k, n, 1, 0);
        return ans;
    }

    private void build(int k, int n, int startIndex, int sum) {

        if (sum > n) return;

        if (path.size() > k) return;

        if (sum == n && path.size() == k) {
            ans.add(new ArrayList<>(path));
            return;
        }

        for(int i = startIndex; i <= 9; i++) {
            path.add(i);
            sum += i;
            build(k, n, i + 1, sum);
            sum -= i;
            path.removeLast();
        }
    }
}

17. 电话号码的字母组合

还有一道,做不完了555,明天再做吧

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2195704.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

销冠的至高艺术:让自己不像销售

若想在销售领域脱颖而出&#xff0c;首先是让自己超越传统销售的框架&#xff0c;成为客户心中不可多得的行业顾问与信赖源泉。这不仅是身份的蜕变&#xff0c;更是影响力与信任度质的飞跃。 销冠对客户只吸引不骚扰&#xff0c;不讲自己卖什么&#xff0c;只讲自己能解决什么…

销售秘籍:故事+观点+结论

在销售的浩瀚宇宙中&#xff0c;隐藏着一个不朽的秘诀——利用人类共有的“错失恐惧”&#xff0c;激发客户内心的渴望与行动。正如村上春树所言&#xff0c;每个故事都深深植根于灵魂&#xff0c;而大仲马则揭示&#xff0c;灵魂之眼所见&#xff0c;比肉眼更为长久铭记。 错…

【C++】入门基础介绍(下)输入输出,函数重载,缺省与引用

文章目录 7. C输入与输出8. 缺省参数9. 函数重载10. 引用10. 1 引用的概念10. 2 引用的特性10. 3 引用的使用10. 4 const引用10. 5 指针和引用的关系 11. inline12. nullptr 7. C输入与输出 iostream是 Input Output Stream 的缩写&#xff0c;是标准输入、输出流库&#xff0…

k8s 中存储之 PV 持久卷 与 PVC 持久卷申请

目录 1 PV 与 PVC 介绍 1.1 PersistentVolume&#xff08;持久卷&#xff0c;简称PV&#xff09; 1.2 PersistentVolumeClaim&#xff08;持久卷声明&#xff0c;简称PVC&#xff09; 1.3 使用了PV和PVC之后&#xff0c;工作可以得到进一步的细分&#xff1a; 2 持久卷实验配置…

什么是安全运营中心 SOC?

SOC 代表安全运营中心&#xff0c;它是任何企业中负责组织安全、保护企业免受网络风险的单一、集中的团队或职能。 安全运营中心将管理和控制业务运营的所有安全要素&#xff0c;从监控资产到雇用合适的人员和流程&#xff0c;再到检测和应对威胁。 在本文中&#xff0c;我们…

sqli-labs less-14post报错注入updatexml

post提交报错注入 闭合方式及注入点 利用hackbar进行注入&#xff0c;构造post语句 unameaaa"passwdbbb&SubmitSubmit 页面报错&#xff0c;根据分析&#xff0c;闭合方式". 确定列数 构造 unameaaa" or 11 # &passwdbbb&SubmitSubmit 确定存在注…

【Blender Python】7.一些运算、三角函数以及随机

概述 要用Blender进行程序生成&#xff0c;数学计算是少不了的&#xff0c;Python支持一些常规的表达式计算&#xff0c;而另外一些相关的数学函数则在math模块中。 一些基础的运算 取余、除法、整除 >>> 21 % 4 1>>> 21 / 4 5.25>>> 21 // 4 5…

视频画面提取保存为图片:简易方法与实用工具

如果需要在视频里随机截取某一帧作为照片来保存或分享&#xff0c;如何快速剪辑多个视频&#xff1f;幸运的是&#xff0c;如今有多种简易的方法和实用的工具可以帮助我们轻松实现这一目标。 1打开“媒体梦工厂”用到“视频封面”功能&#xff0c; 2在此功能里切换到“抽帧/提取…

通过实时可视性转变云安全

Upwind首席执行官 Amiram Shachar 讨论了混合和多云环境中云安全的复杂性。 他概述了深入了解配置和实时洞察的必要性&#xff0c;以实现敏捷性和安全性之间的平衡。 还分享了解决错误配置和确保合规性的策略&#xff0c;建议在云部署中采取主动的风险管理方法。 随着混合云…

毕设 大数据电影数据分析与可视化系统(源码+论文)

文章目录 0 前言1 项目运行效果2 设计概要3 最后 0 前言 &#x1f525;这两年开始毕业设计和毕业答辩的要求和难度不断提升&#xff0c;传统的毕设题目缺少创新和亮点&#xff0c;往往达不到毕业答辩的要求&#xff0c;这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师…

Bluetooth Channel Sounding中关于CS Event Subevent的详细介绍

BLE CS Event & Subevent定义&#xff1a; BLE CS Event事件定义为&#xff1a;CS 事件被定义为从同一个 LE piconet 物理通道连接事件锚点具有相同偏移Offset的所有 CS Subevent子事件组&#xff0c;如图 1所示&#xff0c;具体参考Vol 1, Part A 3.3.2.5.2 Characteristi…

自动驾驶系统研发系列—如何选择适合自动驾驶的激光雷达?从基础到高端全解读

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

CSS圆角

在制作网页的过程中&#xff0c;有时我们可能需要实现圆角的效果&#xff0c;以前的做法是通过切图&#xff08;将设计稿切成便于制作成页面的图片&#xff09;&#xff0c;使用多个背景图像来实现圆角。在 CSS3 出现之后就不需要这么麻烦了&#xff0c;CSS3 中提供了一系列属性…

阿里云APP创建

首先进入阿里云生活物联网平台 阿里云生活物联网平台 创建新项目 然后创建新产品 完成后进入功能定义区 已经定义号插座电源开关&#xff0c;直接下一步 注意保留三元组信息 进入设备调试 没有模组&#xff0c;直接下一步 人机交互界面 最后测试 激活码&…

十大时间序列预测模型

目录 1. 自回归模型 原理 核心公式 推导过程: 完整案例 2. 移动平均模型 原理 核心公式 推导过程: 完整案例 3. 自回归移动平均模型 原理 核心公式 推导过程: 完整案例 4. 自回归积分移动平均模型 原理 核心公式 推导过程 完整案例 5. 季节性自回归积分…

Axios 快速入门

什么是Ajax Ajax 是一种通过 JavaScript 发送异步请求的技术&#xff0c;它的核心是使用 XMLHttpRequest 对象来与服务器交换数据。这种方式较为繁琐&#xff0c;因为需要手动处理请求状态和响应&#xff0c;并且编写的代码往往比较冗长。 相较之下&#xff0c;Axios 是一个基于…

其他:Python语言绘图合集

文章目录 介绍注意导入数据函数模块画图 介绍 python语言的科研绘图合集 注意 This dataset includes the following (All files are preceded by "Marle_et_al_Nature_AirborneFraction_"):- "Datasheet.xlsx": Excel dataset containing all annual a…

感知机学习算法

感知机 一、感知机简介二、感知机模型2.1 感知机的基本组成2.2 求和函数2.2.1 时间总合2.2.2 空间总合 2.3 激活函数2.4 学习算法2.4.1 赫布学习规则2.4.2 Delta学习规则 三、 结论参考文献 一、感知机简介 M-P神经元模型因其对生物神经元激发过程的极大简化而成为神经网络研究…

qt_c++_xml简单示范demo

迅雷链接 链接&#xff1a;https://pan.xunlei.com/s/VO8bJODxPfPHE0x3nfUa2KZ1A1?pwdtuxq# 复制这段内容后打开手机迅雷App&#xff0c;查看更方便 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow> #include <QTextCodec>#include <QFile&g…

PGMP-01概述2

目录 1.what is program management? 项目集管理 2.relationships among portfolio,program,and project management and roles in OPM 4.relationships among portfolio,program,and project management 5.组织战略、项目集管理和运营管理之间的关系 6.business vlaue…