洛谷P5723、P5728、P1428、P1319 Python解析

news2024/11/25 1:07:05

P5723

完整代码

def is_prime(y):
    if y < 2:
        return False
    for i in range(2, int(y**0.5) + 1):
        if y % i == 0:
            return False
    return True

n = int(input())
sum_primes = 0
x = 0

if n < 2:
    print("0")
elif n == 2:
    print("2\n1")
else:
    for i in range(2, n + 1):
        if i % 2 == 0 and i != 2:
            continue
        if sum_primes + i > n:
            print(x)
            break
        if is_prime(i):
            print(i)
            sum_primes += i
            x += 1

P5728

完整代码

def f(x, y):  # 判断上下各门之差
    return abs(x - y)

n = int(input())
s = []

for i in range(n):
    c, m, e = map(int, input().split())
    total_sum = c + m + e  # 计算每个人的分数和
    s.append({'c': c, 'm': m, 'e': e, 'sum': total_sum})

ans = 0
for i in range(n):
    for j in range(i + 1, n):
        if (f(s[i]['c'], s[j]['c']) <= 5 and
            f(s[i]['e'], s[j]['e']) <= 5 and
            f(s[i]['m'], s[j]['m']) <= 5 and
            f(s[i]['sum'], s[j]['sum']) <= 10):  # 符合条件,ans++
            ans += 1

print(ans)

P1428

完整代码

n = int(input())
a = list(map(int, input().split()))
sum_arr = [0] * n  # 初始化sum数组为0

for i in range(1, n):
    for j in range(i, 0, -1):
        if a[i] > a[j - 1]:
            sum_arr[i] += 1

print(' '.join(map(str, sum_arr)))  # 输出

P1319

完整代码

# 获取输入
inputs = list(map(int, input().strip().split()))

# 提取矩阵大小
n = inputs[0]
compressed = inputs[1:]

result = ""

# 开始解压
current_char = "0"
for count in compressed:
    result += current_char * count
    # 切换当前字符
    current_char = "1" if current_char == "0" else "0"

# 将结果输出为的矩阵
for i in range(n):
    print(result[i * n:(i + 1) * n])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2195447.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计数原理与组合 - 离散数学系列(三)

目录 1. 计数原理的基本概念 加法原理&#xff08;Rule of Sum&#xff09; 乘法原理&#xff08;Rule of Product&#xff09; 2. 排列与组合 排列&#xff08;Permutation&#xff09; 组合&#xff08;Combination&#xff09; 日常生活中的例子 3. 二项式定理 4. 实…

Mysql锁机制解读(敲详细)

目录 锁的概念 全局锁 表级锁 表锁 元数据锁 意向锁 锁的概念 全局锁 表级锁 表锁 元数据锁 主要是对未提交事务&#xff0c;修改表结构造成表结构混乱&#xff0c;进行控制。 在不涉及表结构变化的情况下,元素锁可以忽略。 意向锁 避免有行级锁影响加表级锁&#xff0…

Mysql(六) --- 聚合函数,分组和联合查询

文章目录 前言1.聚合函数1.1.常用的函数1.2.COUNT()1.3.SUM()1.4.AVG()1.5.MIN()、MAX() 2.GROUP BY 分组查询2.1.语法2.2.示例2.3.HAVING 子句 3.联合查询3.1.为什么要进行联合查询3.2.那么是如何进行联合查询的3.3.示例&#xff1a;一个完整的联合查询的过程3.4.内连接3.5.外…

Error:WPF项目中使用oxyplot,错误提示命名空间中不存在“Plot”名称

在OxyPlot中&#xff0c;<oxy:PlotView>和<oxy:Plot>都是用来显示图表的控件&#xff0c;在WPF项目中使用oxyplot之前&#xff0c;先通过NuGet安装依赖包&#xff1a;OxyPlot.Wpf。 <oxy:PlotView>和<oxy:Plot>使用示例&#xff1a; <oxy:PlotVie…

【算法】双指针(续)

一、盛最多水的容器 11. 盛最多水的容器 - 力扣&#xff08;LeetCode&#xff09; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多…

OJ在线评测系统 微服务 OpenFeign调整后端下 nacos注册中心配置 不给前端调用的代码 全局引入负载均衡器

OpenFeign内部调用二 4.修改各业务服务的调用代码为feignClient 开启nacos注册 把Client变成bean 该服务仅内部调用&#xff0c;不是给前端的 将某个服务标记为“内部调用”的目的主要有以下几个方面&#xff1a; 安全性: 内部API通常不对外部用户公开&#xff0c;这样可以防止…

Nginx05-基础配置案例

零、文章目录 Nginx05-基础配置案例 1、案例需求 &#xff08;1&#xff09;有如下访问 http://192.168.119.161:8081/server1/location1 访问的是&#xff1a;index_sr1_location1.htmlhttp://192.168.119.161:8081/server1/location2 访问的是&#xff1a;index_sr1_loca…

慢接口分析与优化总结

文章目录 1. 慢接口优化的意义2. 接口耗时构成3. 优化技巧3.1. 内部代码逻辑异步执行[异步思想]并行优化拒绝阻塞等待预分配与循环使用[池化思想]线程池合理设计锁粒度避免过粗优化程序结构 3.2. 缓存恰当引入缓存[空间换时间思想]缓存延迟优化提前初始化缓存[预取思想] 3.3. 数…

工具函数(截取文本第一个字为图片)

const subStringToImage (params) > {const { str ,color #FFF,background #4F54FF,size 60,fontSize 20 } paramsif(str.length < 0) return console.error(字符不能为空!)const text str.slice(0, 1)const canvas document.createElement(canvas)const ctx …

github 国内文件加速下载

参看;https://www.cnblogs.com/ting1/p/18356265 在源网址前加上 https://hub.gitmirror.com/ 或https://mirror.ghproxy.com/&#xff0c;例如&#xff1a; https://hub.gitmirror.com/https://github.com/t1m0thyj/WinDynamicDesktop/releases/download/v5.4.1/WinDynamicD…

算法题总结(十)——二叉树上

#二叉树的递归遍历 // 前序遍历递归LC144_二叉树的前序遍历 class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> result new ArrayList<Integer>(); //也可以把result 作为全局变量&#xff0c;只需要一个函数即可。…

公开数据集网站分享

参考链接&#xff1a;常用的医学组织切片细胞图像数据集_细胞分割数据集-CSDN博客文章浏览阅读1.3w次&#xff0c;点赞32次&#xff0c;收藏133次。乳腺癌细胞图像数据集、血细胞图像数据集、HE染色切片、疟疾细胞图像图像识别、分类、分割_细胞分割数据集https://blog.csdn.ne…

Redis list 类型

list类型 类型介绍 列表类型 list 相当于 数组或者顺序表 list内部的编码方式更接近于 双端队列 &#xff0c;支持头插 头删 尾插 尾删。 需要注意的是&#xff0c;Redis的下标支持负数下标。 比如数组大小为5&#xff0c;那么要访问下标为 -2 的值可以理解为访问 5 - 2 3 …

Linux dlsym和直接调用函数地址解析分析

dlsym 函数是 Linux 下动态链接库&#xff08;shared library&#xff09;编程中的一个重要函数。它用于在运行时获取动态链接库中符号的地址&#xff0c;通常用于获取函数指针或变量的地址。 以下是 dlsym 函数的基本用法和示例。 1. 函数原型 void *dlsym(void *handle, c…

【超详细】基于YOLOv11的PCB缺陷检测

主要内容如下&#xff1a; 1、数据集介绍 2、下载PCB数据集 3、不同格式数据集预处理&#xff08;Json/xml&#xff09;&#xff0c;制作YOLO格式训练集 4、模型训练及可视化 5、Onnxruntime推理 运行环境&#xff1a;Python3.8&#xff08;要求>3.8&#xff09;&#xff…

ubuntu ssh远程执行k8s命令报错the connection to the server localhost:8080 was refused

修改前&#xff1a; ssh root192.168.31.167 kubectl apply -f /root/jenkinsexcute/saas.demo.api.k8s.yml --recordecho "export KUBECONFIG/etc/kubernetes/admin.conf" >> /root/.bashrc 修改后 添加一段&#xff1a;export KUBECONFIG/etc/kubernetes/a…

【专题】操作系统概述

1. 操作系统的目标和作用 操作系统的目标与应用环境有关。 在查询系统中所用的OS&#xff0c;希望能提供良好的人—机交互性&#xff1b; 对于应用于工 业控制、武器控制以及多媒体环境下的OS&#xff0c;要求其具有实时性&#xff1b; 对于微机上配置的OS&#xff0c;则更看…

什么是强基计划?

“强基计划”是中国教育部于2020年推出的一项全新的高等教育招生改革计划&#xff0c;旨在通过更加科学、公正的选拔机制&#xff0c;选拔出有志于基础学科并具备扎实学科功底、创新潜质的优秀学生&#xff0c;从而推动国家基础学科的发展&#xff0c;提升自主创新能力。与传统…

【自动驾驶】UniAD代码解析

1.参考 论文&#xff1a;https://arxiv.org/pdf/2212.10156 代码&#xff1a;https://github.com/OpenDriveLab/UniAD 2.环境配置 docs/INSTALL.md &#xff08;1&#xff09;虚拟conda环境 conda create -n uniad python3.8 -y conda activate uniad &#xff08;2&#…

微信小程序和抖音小程序的分享和广告接入代码

开发完成小程序或者小游戏之后&#xff0c;我们为什么要接入分享和广告视频功能&#xff0c;主要原因有以下几个方面。 微信小程序和抖音小程序接入分享和广告功能主要基于以下几个原因&#xff1a; 用户获取与增长&#xff1a;分享功能可以帮助用户将小程序内容传播给更多人&…