如何在 Kubernetes 上部署 Spark

news2024/11/25 11:29:40

在 Kubernetes 集群中部署 Apache Spark,需要你具备对 Kubernetes 的工作原理、Spark 的架构以及云原生应用的理解。

前期准备工作

在进行 Spark 的部署之前,需要对你的 Kubernetes 环境做好充分的准备。这包括 Kubernetes 集群的搭建以及基础工具的安装,比如 kubectl 和 Helm 等。这些步骤对于成功部署 Spark 至关重要。

假设你已经有了一个 Kubernetes 集群。如果没有,你可以使用 Minikube 来创建一个本地的集群,或者选择 AWS EKS、Azure AKS、Google GKE 等云服务来提供的 Kubernetes 集群服务。

以下是一些关键的准备步骤:

  1. 设置 Kubernetes 集群
    为了在 Kubernetes 集群上部署 Spark,首先你需要一个稳定的 Kubernetes 环境。对于本地测试,你可以选择 Minikube,它非常适合本地开发和测试。对于生产环境,你可以选择使用公共云平台的 Kubernetes 服务,如 Google Kubernetes Engine (GKE) 或 Amazon Elastic Kubernetes Service (EKS)。

    例如,使用 Minikube 创建 Kubernetes 集群:

    minikube start --memory=4096 --cpus=4
    

    这个命令会启动一个本地 Kubernetes 集群,并分配 4GB 的内存和 4 个 CPU 以支持 Spark 应用的运行。

  2. 安装 Kubernetes 工具
    确保你已经安装了 kubectl(用于与 Kubernetes 集群通信的命令行工具)和 Helm(Kubernetes 的包管理工具)。这些工具会帮助你管理集群和部署应用。

    例如,可以使用如下命令安装 Helm:

   curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

通过 Helm,你可以快速安装和配置 Spark 以及其他工具。

  1. 配置 Docker 镜像
    Kubernetes 使用容器化应用程序,因此你需要确保 Spark 可以作为 Docker 容器运行。Apache Spark 的官方 Docker 镜像可以直接从 Docker Hub 获取,也可以自定义构建自己的镜像。

    例如,从 Docker Hub 拉取 Spark 镜像:

   docker pull bitnami/spark:latest
   

如果你需要修改 Spark 的配置,可以基于这个官方镜像构建你自己的 Docker 镜像。

创建 Spark 配置文件

在 Kubernetes 中部署 Spark 时,通常需要定义多个配置文件来描述资源和服务。这些文件包括 Spark 的 Deployment、Service,以及其他 Kubernetes 资源的 YAML 文件。具体来说,以下几个配置文件非常关键:

  1. Spark Master 和 Worker 的 Deployment 配置

Spark 集群由 Master 和 Worker 节点组成。Master 节点负责管理 Worker 节点,分发任务并收集结果。需要在 Kubernetes 中分别创建 Master 和 Worker 的 Deployment 配置。

一个简单的 Spark Master Deployment YAML 文件如下:

   apiVersion: apps/v1
   kind: Deployment
   metadata:
     name: spark-master
     labels:
       app: spark
       role: master
   spec:
     replicas: 1
     selector:
       matchLabels:
         app: spark
         role: master
     template:
       metadata:
         labels:
           app: spark
           role: master
       spec:
         containers:
         - name: spark-master
           image: bitnami/spark:latest
           ports:
           - containerPort: 7077
           - containerPort: 8080
           env:
           - name: SPARK_MODE
             value: master
   

在这个配置中,我们指定了使用 Bitnami 提供的 Spark Docker 镜像,并设置了 Master 的工作模式。

  1. Spark Worker 的 Deployment 配置
    与 Master 类似,Worker 节点的 Deployment 配置如下:
   apiVersion: apps/v1
   kind: Deployment
   metadata:
     name: spark-worker
     labels:
       app: spark
       role: worker
   spec:
     replicas: 2
     selector:
       matchLabels:
         app: spark
         role: worker
     template:
       metadata:
         labels:
           app: spark
           role: worker
       spec:
         containers:
         - name: spark-worker
           image: bitnami/spark:latest
           ports:
           - containerPort: 8081
           env:
           - name: SPARK_MODE
             value: worker
           - name: SPARK_MASTER_URL
             value: spark://spark-master:7077
   

在这个配置文件中,SPARK_MASTER_URL 用于指向 Master 的位置。Worker 会与 Master 进行通信,以获取任务并执行。

  1. Service 配置
    为了让集群内部和外部的应用程序可以访问 Spark Master 和 Worker,通常需要为它们创建 Service 资源。一个典型的 Spark Master 的 Service 配置如下:
   apiVersion: v1
   kind: Service
   metadata:
     name: spark-master
     labels:
       app: spark
       role: master
   spec:
     type: LoadBalancer
     ports:
     - port: 7077
       targetPort: 7077
     - port: 8080
       targetPort: 8080
     selector:
       app: spark
       role: master

这个 Service 使用 LoadBalancer 类型来确保外部可以访问 Spark Master 的 UI 界面。

部署 Spark 到 Kubernetes

准备好上述配置文件后,你可以使用 kubectl 命令将这些资源部署到 Kubernetes 集群中。

  1. 部署 Master 和 Worker
    使用以下命令分别部署 Spark Master 和 Worker:
   kubectl apply -f spark-master-deployment.yaml
   kubectl apply -f spark-worker-deployment.yaml

这些命令会创建 Master 和 Worker 的 Pod,并确保它们能够在 Kubernetes 集群中正常运行。

  1. 部署 Service
    接下来,创建 Service 以便让 Spark 集群对外部服务开放:
   kubectl apply -f spark-master-service.yaml

通过这个 Service,你可以访问 Spark Master 的 Web UI,查看集群的运行状态和 Worker 的信息。

提交 Spark 作业到 Kubernetes 集群

Spark 任务的执行可以通过 Spark 提交工具 spark-submit 来完成。在 Kubernetes 环境中,可以直接使用带有 Kubernetes 支持的 Spark 镜像来提交作业。

例如,使用以下命令提交一个简单的 Spark 作业:

spark-submit \
  --master k8s://https://<kubernetes-master-url>:<port> \
  --deploy-mode cluster \
  --name spark-pi \
  --class org.apache.spark.examples.SparkPi \
  --conf spark.executor.instances=3 \
  --conf spark.kubernetes.container.image=bitnami/spark:latest \
  local:///opt/spark/examples/jars/spark-examples_2.12-3.0.1.jar

在这个例子中,我们使用 spark-submit 命令来提交 Spark 作业,并指定使用 Kubernetes 集群作为 Master。--conf spark.kubernetes.container.image 用于指定作业运行时使用的 Docker 镜像。这个命令会在 Kubernetes 集群中启动一个 Spark Driver Pod,Driver 会进一步启动 Executor Pods 来执行计算任务。

真实案例:数据分析平台的部署

为了帮助理解,可以看一个真实的应用场景:一家大型电商公司需要构建一个实时的数据分析平台来监控用户行为和销售数据。他们选择使用 Spark 来实现数据处理,并使用 Kubernetes 管理他们的 Spark 集群。以下是该公司如何实现这一目标的案例:

  • 需求分析:公司需要对网站的实时访问数据进行处理,以便对用户行为进行分析。Spark 被选中用于数据处理,因为它支持大规模数据并行处理,能够很好地处理电商平台的日志数据。
  • Kubernetes 的选择:为了实现灵活的资源管理和自动扩展,公司决定将 Spark 部署在 Kubernetes 集群中。Kubernetes 提供了强大的调度和集群管理功能,能够动态地分配资源,并根据负载自动扩展 Worker 节点的数量。
  • 部署过程:公司首先准备了 Kubernetes 集群,并使用 Helm Charts 部署了 Spark。通过 Helm,部署过程被大大简化,他们只需调整一些配置参数,比如 Spark 运行的 Executor 数量和资源限制。
  • 作业提交与监控:团队通过 Spark 的 Web UI 监控集群的状态,确保所有 Worker 都处于活跃状态。然后,他们通过 spark-submit 提交了一个流式数据处理作业,这个作业从 Kafka 读取实时数据,并进行清洗、聚合,最终将结果存储到 Elasticsearch 中以供分析。
  • 扩展性和弹性:在双十一大促期间,用户访问量激增,公司通过 Kubernetes 轻松地增加了 Spark Worker 节点的数量,以确保处理能力能够应对高峰流量。Kubernetes 的弹性伸缩功能在这一场景下发挥了关键作用。

这个案例展示了在 Kubernetes 中部署 Spark 的灵活性和可扩展性。使用 Kubernetes 的好处是,你可以很容易地扩展 Spark 的 Worker 数量来应对峰值流量,而且 Kubernetes 还提供了健壮的容错机制,确保集群的高可用性。

部署中的挑战和解决方法

在 Kubernetes 中部署 Spark,除了基本的配置外,还可能遇到一些挑战。例如,网络通信、资源调度和存储系统的集成等问题。这些挑战可以通过以下方法解决:

  1. 网络配置
    Spark 需要 Master 与 Worker 之间的网络通信。为了保证网络的连通性,可以使用 Kubernetes 的 NetworkPolicy 来控制 Pod 之间的通信。此外,确保 Kubernetes 集群中的所有节点都可以访问 Spark 的 Master 和 Worker。

    在某些云环境中,可能需要配置额外的安全组或防火墙规则,以确保集群内外的访问正常。比如,在 AWS 环境中,需要对 Spark Master 的 LoadBalancer 开放 7077 和 8080 端口,以便 Worker 和用户能够访问。

  2. 资源调度
    Spark 的 Executor 和 Driver 都需要一定的计算资源。如果 Kubernetes 集群中的资源不够,可能会导致作业失败或性能下降。因此,在提交作业时,可以通过 --conf 参数来为 Spark 任务设置适当的 CPU 和内存限制。

    例如,可以使用如下配置来限制 Executor 使用的资源:

   --conf spark.executor.memory=2g \
   --conf spark.executor.cores=1

通过为每个 Executor 分配合适的内存和 CPU,能够保证资源的高效利用,并避免某个节点因为资源不足而导致的任务失败。

  1. 数据存储与持久化
    Spark 通常需要从外部存储系统读取数据,比如 HDFS、S3 或 Google Cloud Storage。在 Kubernetes 中部署 Spark 时,可以通过 Kubernetes 的 PersistentVolume 和 PersistentVolumeClaim 来持久化数据。

    例如,如果你的数据存储在 AWS S3 上,可以在 Spark 的配置中加入访问凭证,以便 Spark 可以直接从 S3 读取数据:

   --conf spark.hadoop.fs.s3a.access.key=YOUR_ACCESS_KEY \
   --conf spark.hadoop.fs.s3a.secret.key=YOUR_SECRET_KEY

这种方式让 Kubernetes 中的 Spark 可以无缝地与云存储服务集成,使数据处理变得更加方便和高效。

总结与思考

在 Kubernetes 中部署 Spark,可以充分利用 Kubernetes 的容器编排和自动扩展能力,让 Spark 集群能够根据工作负载动态调整。这个过程虽然涉及多个复杂的步骤,但 Kubernetes 的工具链(如 Helm、kubectl 等)以及 Spark 提供的 Kubernetes 集成特性,使得整体部署流程相对顺畅。

通过真实案例的讲解,我们看到 Kubernetes 和 Spark 的结合为大型电商公司提供了强大的数据处理能力。在实际生产中,这种架构不仅可以应对实时数据处理需求,还可以为未来的业务增长提供充足的扩展空间。

如果你正在考虑将 Spark 部署到 Kubernetes 集群中,可以从本地集群(例如 Minikube)开始,熟悉基本的部署和管理流程。一旦你掌握了这些技能,就可以将它们应用到更复杂的生产环境中,例如在公共云上运行的 Kubernetes 集群,通过自动化工具和脚本,进一步优化 Spark 的部署和管理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2195294.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【大模型理论篇】大模型相关的周边技术分享-关于《NN and DL》的笔记

本文所要介绍的一本书《Neural Networks and Deep Learning》&#xff0c;该书作者Michael Nielsen&#xff0c;Y Combinator Research的研究员&#xff0c;是多年之前自己看的一本基础书籍&#xff0c;很适合入门了解一些关于深度学习的概念知识&#xff0c;当然也包含了一些小…

华为OD机试 - 日志限流 - 二分查找(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…

毕业设计——springboot + VUE实现后台管理系统(集成JWT接口权限验证)

作品详情 - 高质量的代码、代码结构、和代码注释 - 漂亮的UI&#xff0c;菜单栏、标签页&#xff0c;体验、交互更好用的员工、部门、角色、菜单管理等等 - 优化基于Keepalive的标签页&#xff0c;做到标签页该缓存的时候缓存&#xff0c;比如左右切换等&#xff0c;不该缓存的…

二、图解C#教程

一、方法 {}块&#xff0c;里面的是方法体 二、Var关键字 推断出等号右边的实际类型 三、局部常量 1、声明时必须初始化 2、声明后不能改变

虚拟内存能不能完全关了?太占空间了……

前言 这几天咱们提到关于Swap区&#xff08;就是Linux上的数据交换分区&#xff09;&#xff0c;在Windows上这个功能被称为虚拟内存。 前段时间&#xff08;应该是很早之前&#xff09;&#xff0c;小白写过一篇关于虚拟内存的文章&#xff1a; Windows调大虚拟内存来代替升…

常见激活函数总结

简介&#xff1a;个人学习分享&#xff0c;如有错误&#xff0c;欢迎批评指正。 一. 激活函数的定义 激活函数&#xff08;Activation Function&#xff09;是人工神经网络中对每个神经元的输入进行非线性变换的函数。神经网络中的每个神经元都会接受来自上一层的输入&#xf…

qt_c++_xml存这种复杂类型

demo&#xff0c;迅雷链接。或者我主页上传的资源 链接&#xff1a;https://pan.xunlei.com/s/VO8bIvYFfhmcrwF-7wmcPW1SA1?pwdnrp4# 复制这段内容后打开手机迅雷App&#xff0c;查看更方便 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>#include…

【MySQL】使用 JDBC 连接数据库

文章目录 前言1. 认识 JDBC1.1 概念1.2 好处 2. 使用 JDBC2.1 安装数据驱动包2.2 把 jar 包导入到项目中2.3 代码编写2.4 测试结果 3. 代码优化4. 源码展示结语 前言 在 MySQL 系列中&#xff0c;我们介绍了很多内容&#xff0c;包括但不限于建库建表&#xff0c;增删查改等等…

如何使用MATLAB代码生成器生成ADRC跟踪微分器(TD) PLC源代码(SCL)

ADRC线性跟踪微分器TD详细测试 ADRC线性跟踪微分器TD详细测试(Simulink 算法框图+CODESYS ST+博途SCL完整源代码)-CSDN博客文章浏览阅读383次。ADRC线性跟踪微分器(ST+SCL语言)_adrc算法在博途编程中scl语言-CSDN博客文章浏览阅读784次。本文介绍了ADRC线性跟踪微分器的算法和…

图论day55|深度优先搜索理论基础、98. 所有可达路径(卡码网)

图论day55|深度优先搜索理论基础、98. 所有可达路径(卡码网&#xff09; 思维导图汇总深度优先搜索理论基础98.所有可达路径(卡码网)1.邻接矩阵法2.邻接表法 思维导图汇总 深度优先搜索理论基础 深度优先搜索&#xff08;dfs&#xff09;与广度优先搜索&#xff08;bfs&#xf…

@Transactional声明式事务回调编程

文章目录 1. 理论阐述2. 代码实现2.1. 问题代码2.2. 改进方案 本文参考&#xff1a; 事务回调编程 大事务问题 1. 理论阐述 最近在学习数据库事务的过程中&#xff0c;了解到了大事务的危害&#xff1a; 并发情况下&#xff0c;数据库连接资源容易耗尽锁定数据较多&#xff0…

SpringBoot企业级开发(SpringSecurity安全控制+pringBatch批处理+异步消息+系统集成SpringIntegration)

Spring Security 多个过滤器来实现所有安全的功能&#xff0c;只需要注册一个特殊的DelegatingFilterProxy过滤器到WebAppliationInitializer即可 实际使用中需要让自己的Initializer类继承AbstractSecurity WebApplicationInitializer抽象类即可。 AbstractSecurityWebAppli…

【瑞昱RTL8763E】刷屏

1 显示界面填充 用户创建的各个界面在 rtk_gui group 中。各界面中 icon[]表对界面进行描述&#xff0c;表中的每个元素代表一 个显示元素&#xff0c;可以是背景、小图标、字符等&#xff0c;UI_WidgetTypeDef 结构体含义如下&#xff1a; typedef struct _UI_WidgetTypeDef …

每年每门学科排名第一的学生 和每年总成绩都有所提升的学生

一张学生成绩表(student_scores)&#xff0c;有year-学年&#xff0c;subject-课程&#xff0c;student-学生&#xff0c;score-分数这四个字段&#xff0c;请完成如下问题&#xff1a; 问题1&#xff1a;每年每门学科排名第一的学生 问题2&#xff1a;每年总成绩都有所提升的…

【STM32 HAL库】MPU6050 DMP库移植 与 自检失败的处理

【STM32 HAL库】MPU6050 DMP库移植 与 自检失败的处理 本文参考移植步骤文件配置代码修改inv_mpu.cinv_mpu.hinv_mpu_dmp_motion_driver.c 使用 自检失败怎么处理ret -1改正DEBUG过程 ret -9改正DEBUG过程 本文参考 B站 CSDN 移植步骤 文件配置 新建一个 dmp 文件夹 并将…

【斯坦福CS144】Lab1

一、实验目的 1.实现一个流重组器——一个将字节流的小块 &#xff08;称为子串或段 &#xff09;按正确顺序组装成连续的字节流的模块&#xff1b; 2.深入理解 TCP 协议的工作方式。 二、实验内容 编写一个名为"StreamReassembler"的数据结构&#xff0c;它负责…

【Nacos入门到实战十四】Nacos配置管理:集群部署与高可用策略

个人名片 &#x1f393;作者简介&#xff1a;java领域优质创作者 &#x1f310;个人主页&#xff1a;码农阿豪 &#x1f4de;工作室&#xff1a;新空间代码工作室&#xff08;提供各种软件服务&#xff09; &#x1f48c;个人邮箱&#xff1a;[2435024119qq.com] &#x1f4f1…

原神5.1前瞻网页HTML+CSS+JS

这篇文章主要是总结一下我在制作页面的时候用到的一些技术以及经验总结&#xff0c;博主也是第一次写网页&#xff0c;代码也是在不断地“进化”&#xff0c;哪里写的不好大家可以随意指出。 下面就是一些经验总结&#xff0c;如果想看具体效果我这里也不好展示&#xff0c;需要…

pytorch导入数据集

1、概念&#xff1a; Dataset&#xff1a;一种数据结构&#xff0c;存储数据及其标签 Dataloader&#xff1a;一种工具&#xff0c;可以将Dataset里的数据分批、打乱、批量加载并进行迭代等 &#xff08;方便模型训练和验证&#xff09; Dataset就像一个大书架&#xff0c;存…

QSerialPort 串口通信示例

之前使用过MFC写过串口通信的示例&#xff0c;今年学了Qt&#xff0c;特意使用Qt写了串口通信的示例&#xff0c;发现比MFC要容易一些&#xff0c; MFC串口示例如下&#xff1a; Qt示例如下&#xff1a; Qt这个做的很简单&#xff0c;主要还是想验证一下api&#xff0c; 核心…