陀螺仪LSM6DSV16X与AI集成(14)----上报匿名上位机

news2024/11/28 4:47:38

陀螺仪LSM6DSV16X与AI集成.14--上报匿名上位机

  • 概述
  • 视频教学
  • 样品申请
  • 源码下载
  • 硬件准备
  • 上位机通讯
  • 陀螺仪工作方式
  • 欧拉角数据的转换
  • 数据帧填充
  • 校验和计算
  • 数据发送
  • 演示
  • 开启INT中断
  • 中断读取传感器数据
  • 主程序
  • 演示

概述

本文介绍了如何将 LSM6DSV16X 传感器的姿态数据通过匿名通信协议上报到上位机。通过获取传感器的四元数数据,并将其转换为欧拉角(Roll、Pitch、Yaw),然后按照协议格式化数据帧并通过串口传输到上位机。上位机接收后可进行实时显示和分析。这种方式广泛应用于姿态检测和控制系统,特别适合无人机、机器人等需要姿态控制的场景。

最近在弄ST的课程,需要样片的可以加群申请:615061293 。

在这里插入图片描述

视频教学

https://www.bilibili.com/video/BV1ic1fYjEj2/

陀螺仪LSM6DSV16X与AI集成(14)----上报匿名上位机

样品申请

https://www.wjx.top/vm/OhcKxJk.aspx#

源码下载

硬件准备

首先需要准备一个开发板,这里我准备的是自己绘制的开发板,需要的可以进行申请。
主控为STM32H503CB,陀螺仪为LSM6DSV16X,磁力计为LIS2MDL。

在这里插入图片描述

上位机通讯

这里使用的是匿名助手的上位机

https://gitee.com/anotc/AnoAssistant

有专门的通讯协议

在这里插入图片描述

串口通讯协议格式如下所示,需要注意传输为小端模式传输。

在这里插入图片描述

对应的源地址和目标地址分别为0xFD和0xFE。

在这里插入图片描述

我们只需要上报加速度和陀螺仪数据,所以功能码为0x01,数据长度为0x0D,需要主要为小端模式传输。

在这里插入图片描述

陀螺仪工作方式

加速度计测量线性加速度,而陀螺仪测量角旋转。为此,他们测量了科里奥利效应产生的力。
陀螺仪是一种运动传感器,能够感测物体在一轴或多轴上的旋转角速度。它能够精确地感测自由空间中复杂的移动动作,因此成为追踪物体移动方位和旋转动作的必要设备。与加速计和电子罗盘不同,陀螺仪不需要依赖外部力量(如重力或磁场),可以自主地发挥其功能。因此,从理论上讲,只使用陀螺仪就可以完成姿态导航的任务。

在这里插入图片描述

陀螺仪的每个通道检测一个轴的旋转。也就是说陀螺仪通过测量自身的旋转状态,判断出设备当前运动状态,是向前、向后、向上、向下、向左还是向右呢,是加速(角速度)还是减速(角速度)呢,都可以实现,但是要判断出设备的方位(东西南北),陀螺仪就没有办法。

在这里插入图片描述

MEMS陀螺仪主要利用科里奥利力(旋转物体在有径向运动时所受到的切向力)原理,公开的微机械陀螺仪均采用振动物体传感角速度的概念,利用振动来诱导和探测科里奥利力。
MEMS陀螺仪的核心是一个微加工机械单元,在设计上按照一个音叉机制共振运动,通过科里奥利力原理把角速率转换成一个特定感测结构的位移。

在这里插入图片描述

两个相同的质量块以方向相反的做水平震荡。当外部施加一个角速率,就会出现一个科氏力,力的方向垂直于质量运动方向,如垂直方向箭头所示。产生的科氏力使感测质量发生位移,位移大小与所施加的角速率大小成正比,科氏力引起的电容变化即可计算出角速率大小。
科里奥利效应指出,当质量 (m) 以速度 (v) 沿特定方向移动并施加外部角速率 (Ω)(红色箭头)时,科里奥利效应会产生一个力(黄色箭头),导致质量垂直移动。该位移的值与应用的角速率直接相关。

在这里插入图片描述

变量定义。

  /* USER CODE BEGIN 2 */
    float Yaw,Pitch,Roll;  //偏航角,俯仰角,翻滚角
	int16_t	acc_int16[3]	={0,0,0};
	int16_t	gyr_int16[3]		={0,0,0};	
	float acc[3] = {0};
	float gyr[3] = {0};	
	


	uint8_t sumcheck = 0;
	uint8_t addcheck = 0;		
			
	
	int16_t angular_rate_raw[3]={0,0,0};	//pitch,roll,yaw
	uint8_t data_angular_rate_raw[16]={0};
	data_angular_rate_raw[0]=0xAB;//帧头
	data_angular_rate_raw[1]=0xFD;//源地址
	data_angular_rate_raw[2]=0xFE;//目标地址		
	data_angular_rate_raw[3]=0x03;//功能码ID	
	data_angular_rate_raw[4]=0x08;//数据长度LEN
	data_angular_rate_raw[5]=0x00;//数据长度LEN 8
	data_angular_rate_raw[6]=0x01;//mode = 1	
	
	data_angular_rate_raw[13]=0x00;//FUSION _STA:融合状态	
  /* USER CODE END 2 */

欧拉角数据的转换

将欧拉角 Roll、Pitch、Yaw 乘以 100,以保留两位小数的精度。并且为 Yaw 数据减去了 18000,这通常是为了将欧拉角的范围转换为 [-18000, 18000] 这样方便传输的范围。

				Roll=euler[2];
				Pitch=euler[1];
				Yaw=euler[0];					
					
				int16_t	Roll_int16;
				int16_t	Pitch_int16;					
				int16_t	Yaw_int16;	

				Roll_int16 = (int16_t)(Roll);
				Pitch_int16 = (int16_t)(Pitch);
				Yaw_int16 = (int16_t)(Yaw);		

				// 将欧拉角数据转换为 int16_t 格式并填充到数据帧中
				Roll_int16=Roll_int16*100;// 放大100倍以保留小数位
				Pitch_int16=Pitch_int16*100;
				Yaw_int16=Yaw_int16*100-18000;

数据帧填充

将转换后的 Roll_int16、Pitch_int16 和 Yaw_int16 数据依次填充到数据帧的相应位置。

				data_angular_rate_raw[7] = Roll_int16 >> 8;   // Roll 高字节
				data_angular_rate_raw[8] = Roll_int16 & 0xFF; // Roll 低字节
				data_angular_rate_raw[9] = Pitch_int16 >> 8;  // Pitch 高字节
				data_angular_rate_raw[10] = Pitch_int16 & 0xFF;// Pitch 低字节
				data_angular_rate_raw[11] = Yaw_int16 >> 8;   // Yaw 高字节
				data_angular_rate_raw[12] = Yaw_int16 & 0xFF; // Yaw 低字节

校验和计算

使用了双层循环求和来计算校验和,这是一种累加和的方法,确保帧数据的完整性。

				data_angular_rate_raw[13]=0;
				sumcheck = 0;
				addcheck = 0;
				for(uint16_t i = 0; i < 14; i++) {
						sumcheck += data_angular_rate_raw[i]; // 按字节累加计算 sumcheck
						addcheck += sumcheck;                 // 累加 sumcheck 生成 addcheck
				}
				data_angular_rate_raw[14] = sumcheck;     // 将校验和写入帧
				data_angular_rate_raw[15] = addcheck;     // 写入最终的累加值

数据发送

通过 UART 发送封装好的 16 字节数据帧。

HAL_UART_Transmit(&huart1 , (uint8_t *)&data_angular_rate_raw, 16, 0xFFFF);	

演示

在这里插入图片描述

在这里插入图片描述

LSM6DSV16X 特性涉及到的是一种低功耗的传感器融合算法(Sensor Fusion Low Power, SFLP).
低功耗传感器融合(SFLP)算法:
该算法旨在以节能的方式结合加速度计和陀螺仪的数据。传感器融合算法通过结合不同传感器的优势,提供更准确、可靠的数据。
6轴游戏旋转向量:
SFLP算法能够生成游戏旋转向量。这种向量是一种表示设备在空间中方向的数据,特别适用于游戏和增强现实应用,这些应用中理解设备的方向和运动非常关键。
四元数表示法:
旋转向量以四元数的形式表示。四元数是一种编码3D旋转的方法,它避免了欧拉角等其他表示法的一些限制(如万向节锁)。一个四元数有四个分量(X, Y, Z 和 W),其中 X, Y, Z 代表向量部分,W 代表标量部分。
FIFO存储:
四元数的 X, Y, Z 分量存储在 LSM6DSV16X 的 FIFO(先进先出)缓冲区中。FIFO 缓冲区是一种数据存储方式,允许临时存储传感器数据。这对于有效管理数据流非常有用,特别是在数据处理可能不如数据收集那么快的系统中。

在这里插入图片描述

图片包含了关于 LSM6DSV16X 传感器的低功耗传感器融合(Sensor Fusion Low Power, SFLP)功能的说明。这里是对图片内容的解释:
SFLP 功能:

  1. SFLP 单元用于生成基于加速度计和陀螺仪数据处理的以下数据:
  2. 游戏旋转向量:以四元数形式表示设备的姿态。
  3. 重力向量:提供一个三维向量,表示重力方向。
  4. 陀螺仪偏差:提供一个三维向量,表示陀螺仪的偏差。
    激活与重置:
  5. 通过在 EMB_FUNC_EN_A(04h)嵌入式功能寄存器中设置 SFLP_GAME_EN 位为 1 来激活 SFLP 单元。
  6. 通过在 EMB_FUNC_INIT_A(66h)嵌入式功能寄存器中设置 SFLP_GAME_INIT 位为 1 来重置 SFLP 单元。
    性能参数表:
    表格展示了 SFLP 功能在不同情况下的性能,包括静态精度、低动态精度和高动态精度,以及校准时间和方向稳定时间。这些参数反映了传感器在不同运动状态下的精确度和响应速度。

在这里插入图片描述

开启INT中断

陀螺仪LSM6DSV16X的中断管脚接到了PB0,需要将PB0设置为中端口。
在这里插入图片描述

在这里插入图片描述
开启中断。

在这里插入图片描述

中断读取传感器数据

INT1_CTRL (0Dh) 是 LSM6DSV16X 传感器的中断控制寄存器,用于配置和启用 INT1 引脚的各种中断信号。该寄存器的每一位对应于不同的中断源,通过设置这些位可以启用或禁用相应的中断信号。
INT1_FIFO_TH (bit 3):
● 启用 FIFO 阈值中断,将其路由到 INT1 引脚。当 FIFO 达到设定的阈值时触发该中断。默认值为 0(禁用)。

在这里插入图片描述

mian.c中定义变量。

/* USER CODE BEGIN 0 */
uint8_t fifo_flag = 0;
/* USER CODE END 0 */

mian.c中开启中断。

	lsm6dsv16x_pin_int_route_t pin_int;	
  pin_int.fifo_th = PROPERTY_ENABLE;
  lsm6dsv16x_pin_int1_route_set(&dev_ctx, &pin_int);

在stm32h5xx_it.c中添加回调函数引用。

/* USER CODE BEGIN 0 */
extern void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);


/* USER CODE END 0 */

处理PB0外部中断线0(EXTI Line0)的中断。

/**
  * @brief This function handles EXTI Line0 interrupt.
  */
void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */
	HAL_GPIO_EXTI_Callback(INT1_Pin);
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(INT1_Pin);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

在main.c中添加回调函数的定义,检查中断是否由 GPIO_PIN_0引脚触发。

/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){
	if(GPIO_Pin == GPIO_PIN_0)
	{
		mlc_flag=1;
		}	
}
/* USER CODE END 4 */

主程序

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
		
		if(mlc_flag==1)
		{
			mlc_flag=0;
			uint16_t num = 0;

    /* Read watermark flag */
    lsm6dsv16x_fifo_status_get(&dev_ctx, &fifo_status);
    if (fifo_status.fifo_th == 1) {
      num = fifo_status.fifo_level;

      printf( "-- FIFO num %d \r\n", num);

      while (num--) {
        lsm6dsv16x_fifo_out_raw_t f_data;
        int16_t *axis;
        float quat[4];
        float gravity_mg[3];
        float gbias_mdps[3];

        /* Read FIFO sensor value */
        lsm6dsv16x_fifo_out_raw_get(&dev_ctx, &f_data);

        switch (f_data.tag) {
//        case LSM6DSV16X_SFLP_GYROSCOPE_BIAS_TAG:
//          axis = (int16_t *)&f_data.data[0];
//          gbias_mdps[0] = lsm6dsv16x_from_fs125_to_mdps(axis[0]);
//          gbias_mdps[1] = lsm6dsv16x_from_fs125_to_mdps(axis[1]);
//          gbias_mdps[2] = lsm6dsv16x_from_fs125_to_mdps(axis[2]);
//          printf("GBIAS [mdps]:%4.2f\t%4.2f\t%4.2f\r\n",
//                         (double_t)gbias_mdps[0], (double_t)gbias_mdps[1], (double_t)gbias_mdps[2]);

//          break;
//        case LSM6DSV16X_SFLP_GRAVITY_VECTOR_TAG:
//          axis = (int16_t *)&f_data.data[0];
//          gravity_mg[0] = lsm6dsv16x_from_sflp_to_mg(axis[0]);
//          gravity_mg[1] = lsm6dsv16x_from_sflp_to_mg(axis[1]);
//          gravity_mg[2] = lsm6dsv16x_from_sflp_to_mg(axis[2]);
//          printf("Gravity [mg]:%4.2f\t%4.2f\t%4.2f\r\n",
//                         (double_t)gravity_mg[0], (double_t)gravity_mg[1], (double_t)gravity_mg[2]);

//          break;
        case LSM6DSV16X_SFLP_GAME_ROTATION_VECTOR_TAG:
          sflp2q(quat, (uint16_t *)&f_data.data[0]);
//          printf("Game Rotation \tX: %2.3f\tY: %2.3f\tZ: %2.3f\tW: %2.3f\r\n",
//                  (double_t)quat[0], (double_t)quat[1], (double_t)quat[2], (double_t)quat[3]);
				
					float sx=quat[1];  
					float sy=quat[2];  
					float sz=quat[0];  
					float sw=quat[3];
				
					if (sw< 0.0f) 
					{
						sx*=-1.0f;
						sy*=-1.0f;
						sz*=-1.0f;
						sw*=-1.0f;
					}
				
					float sqx = sx * sx;
					float sqy = sy * sy;
					float sqz = sz * sz;
					float euler[3];
					euler[0] = -atan2f(2.0f* (sy*sw+sx*sz), 1.0f-2.0f*(sqy+sqx));
					euler[1] = -atan2f(2.0f * (sx*sy+sz*sw),1.0f-2.0f*(sqx+sqz));
					euler[2] = -asinf(2.0f* (sx*sw-sy*sz));
				
					if (euler[0] <0.0f)
						euler[0] +=2.0f*3.1415926;
					
					for(uint8_t i=0; i<3; i++){
							euler[i] = 57.29578 * (euler[i]);
					}
					
					printf("euler[0]=%f,euler[1]=%f,euler[2]=%f\n",euler[0],euler[1],euler[2]);
												
					
          break;
        default:
         break;
        }
      }

    }				
		
		
		
		}  
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}      

需要注意优化等级。

在这里插入图片描述

演示

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2192449.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Android】Handler消息机制

文章目录 前言概述核心组件概述Android消息机制概述 Android消息机制分析ThreadLocal的工作原理ThreadLocal基础ThreadLocal实现原理 MessageQueueLooperHandler的工作原理总结 前言 本文用于记录Android的消息机制&#xff0c;主要是指Handler的运行机制。部分内容参考自《An…

产品经理都会的ComfyUI搭建指南

最近准备参加一个ComfyUI的活动&#xff0c;发现还没有上手过ComfyUI&#xff0c;于是先部署起来。ComfyUI是一个基于Stable Diffusion开发的UI。比起WebUI表单式交互的简单&#xff0c;ComfyUI主打灵活&#xff0c;Diffusion Model管线中的各个模块如&#xff1a;VAE、Control…

DINOv2: Learning Robust Visual Featureswithout Supervision

Abstract 在自然语言处理方面的模型&#xff0c;可以产生通用视觉特征&#xff08;即无需微调即可跨图像分布和任务工作的特征&#xff09;来极大地简化任何系统中图像的使用。这些模型能够提取出一些可以在不同类型的图像和任务中通用的视觉特征。这意味着不管图像的来源&…

电脑断网或者经常断网怎么办?

1、首先&#xff0c;按一下键盘的win R &#xff0c; 在打开的运行框内输入&#xff1a;cmd 然后按一下回车 或者 点击一下【确定】 2、在命令窗口输入&#xff1a;ipconfig/release , 然后按一下回车 作用&#xff1a;IP释放&#xff0c;相当于把网线拔了重新插上 3、接着…

【D3.js in Action 3 精译_029】3.5 给 D3 条形图加注图表标签(上)

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可…

C++11之线程

编译环境&#xff1a;Qt join&#xff1a;阻塞当前线程&#xff0c;直到线程函数退出 detach&#xff1a;将线程对象与线程函数分离&#xff0c;线程不依赖线程对象管理 注&#xff1a;join和detach两者必选其一&#xff0c;否则线程对象的回收会影响线程的回收&#xff0c;导致…

MATLAB下的RSSI定位程序,二维平面上的定位,基站数量可自适应

文章目录 引言程序概述程序代码运行结果待定位点、锚点、计算结果显示待定位点和计算结果坐标 引言 随着无线通信技术的发展&#xff0c;基于 R S S I RSSI RSSI&#xff08;接收信号强度指示&#xff09;的方法在定位系统中变得越来越流行。 R S S I RSSI RSSI定位技术特别适…

Vue 插槽全攻略:重塑组件灵活性

前言 &#x1f4eb; 大家好&#xff0c;我是南木元元&#xff0c;热爱技术和分享&#xff0c;欢迎大家交流&#xff0c;一起学习进步&#xff01; &#x1f345; 个人主页&#xff1a;南木元元 目录 什么是slot插槽 默认插槽 编译作用域 后备内容 具名插槽 作用域插槽 应…

医药行业的智能合同审查:大模型与AI赋能合规管理

随着医药行业的快速发展&#xff0c;尤其是在全球化背景下&#xff0c;企业在业务拓展、合作协议签订中需要处理大量复杂的合同。合同不仅是业务的法律保障&#xff0c;更是风险管理的重要工具。医药行业合同审查的复杂性源于其严格的合规性要求&#xff0c;包括与政府机构、研…

学会这几个简单的bat代码,轻松在朋友面前装一波13[通俗易懂]

大家好&#xff0c;又见面了&#xff0c;我是你们的朋友全栈君。 这个标题是干什么用的? 最近看晚上某些人耍cmd耍的十分开心&#xff0c;还自称为“黑客”&#xff0c;着实比较搞笑.他们那些花里胡哨的东西在外行看来十分nb,但只要略懂一些&#xff0c;就会发现他们的那些十…

数据库(MySQL):使用命令从零开始在Navicat创建一个数据库及其数据表(三),单表查询

前言 Navicat Premium 17 数据表需要经常清缓存&#xff0c;不然之前的自增的数据可能会一直存在&#xff0c;所以把之前的表删除重新创建是对练习数据库最简单的办法。新建数据库的命令如下&#xff1a; /* 创建有 自增主键的属性id&#xff0c;非空的属性name&#xff0c;唯…

如何使用ssm实现基于BS的超市商品管理系统的设计与实现+vue

TOC ssm787基于BS的超市商品管理系统的设计与实现vue 研究背景与现状 时代的进步使人们的生活实现了部分自动化&#xff0c;由最初的全手动办公已转向手动自动相结合的方式。比如各种办公系统、智能电子电器的出现&#xff0c;都为人们生活的享受提供帮助。采用新型的自动化…

TypeScript面向对象 02

抽象类 以abstract开头的类是抽象类。抽象类和其他类区别不大&#xff0c;只是不能用来创建对象。抽象类就是专门用来被继承的类。 抽象类中可以添加抽象方法。定义一个抽象方法使用abstract&#xff0c;没有方法体。抽象方法只能定义在抽象类中&#xff0c;子类必须对抽象方…

一些硬件知识(二十七)

单片机一般使用NOR FLASH &#xff0c;这是因为NOR FLASH支持字节级的随机读取&#xff0c;可以直接运行存贮其中的程序&#xff0c;NOR FLASH支持读取和执行存储其中的指令&#xff0c;而无需将程序拷贝到RAM中才可执行。NAND FLASH适用于大容量的数据存储&#xff0c;他的读写…

【Canvas与标志】灰座橙底红芯辐射标志

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>灰座橙底红芯辐射标志</title><style type"text/css&q…

msvcp140.dll丢失的解决方法,详细解读6种解决方法

在使用电脑时&#xff0c;我们可能会遇到提示缺少msvcp140.dll的错误信息。这个提示意味着我们的电脑中缺少MSVCP140.dll这个文件&#xff0c;它是某些程序运行所必需的。如果我们遇到这个问题&#xff0c;应该如何解决呢&#xff1f;本文将详细解析如何解决msvcp140.dll丢失的…

qemu模拟arm64环境-构建6.1内核以及debian12

一、背景 手头没有合适的arm64开发板&#xff0c;但是需要arm的环境&#xff0c;于是想到qemu模拟一个。除了硬件交互以外&#xff0c;软件层面的开发还是都可以实现的。 虚拟机还能自定义内存大小和镜像大小&#xff0c;非常适合上板前的验证&#xff0c;合适的话再买也不迟。…

深度学习:5种经典神经网络模型介绍

目录 1. LeNet&#xff1a;CNN的鼻祖 2. AlexNet&#xff1a;深度学习的开山之作 3. VGGNet&#xff1a;深度与简洁的结合 4. GoogLeNet&#xff1a;Inception模块的创新 5. ResNet&#xff1a;残差学习的革命 卷积神经网络&#xff08;CNN&#xff09;已经发展为图像识别…

张雪峰谈人工智能技术应用专业的就业前景!

一、张雪峰谈人工智能技术应用专业 在教育咨询领域&#xff0c;张雪峰老师以其深入浅出的讲解和前瞻性的视角&#xff0c;为广大学子提供了宝贵的专业选择建议。对于人工智能技术应用专业&#xff0c;张雪峰老师通常给予高度评价&#xff0c;认为这是一个充满无限可能且就业前…

DELL SC compellent存储的四种访问方式

DELL SC存储&#xff08;国内翻译为 康贝存储&#xff0c;英文是compellent&#xff09;, compellent存储是dell在大概10多年前收购的一家存储&#xff0c;原来这个公司就叫做compellent。 本文的阅读对象是第一次接触SC存储的技术朋友们&#xff0c;如何访问和管理SC存储。总…