OpenCV计算机视觉库

news2024/11/27 12:55:13

计算机视觉和图像处理

  1. Tensorflow入门
  2. 深度神经网络
  3. 图像分类
  4. 目标检测
  5. 图像分割
  6. OpenCV
  7. Pytorch
  8. NLP自然语言处理

OpenCV

  • 一、OpenCV简介
    • 1.1 简介
    • 1.2 OpenCV部署
    • 1.3 OpenCV模块
  • 二、OpenCV基本操作
    • 2.1 图像的基本操作
      • 2.1.1 图像的IO操作
      • 2.1.2 绘制几何图像
      • 2.1.3 获取并修改图像的像素点
      • 2.1.4 获取图像的属性
      • 2.1.5 图像通道的拆分和合并
      • 2.1.6 色彩空间的改变
    • 2.2 算数操作
      • 2.2.1 图像的加法
      • 2.2.2 图像的混合
  • 三、OpenCV图像处理
    • 3.1 图像的几何变换
    • 3.2 图像的形态学操作
    • 3.3 图像的平滑
    • 3.4 直方图
      • 3.1.4 灰度直方图
      • 3.1.5 直方图均衡化
    • 3.5 边缘检测
      • 3.5.1 Sobel检测算子
      • 3.5.2 Laplacian算子
      • 3.5.3 Canny边缘检测
    • 3.6 模板匹配和霍夫变换的应用
      • 3.6.1 模板匹配
      • 3.6.2 霍夫变换
    • 3.7 图像变化
      • 3.7.1 傅里叶变换
      • 3.7.2 高通和低通滤波
      • 3.7.3 带通和带阻滤波
    • 3.8 轮廓检测与轮廓特征
      • 3.8.1 轮廓检测
      • 3.8.2 轮廓特征
    • 3.9 图像分割
      • 3.9.1 全阈值分割
      • 3.9.2 自适应阈值分割
      • 3.9.3 Ostu阈值(大律法)
      • 3.9.4 分水岭算法
      • 3.9.5 GrabCut算法
  • 四、图像的特征提取与描述
    • 4.1 Harris角点检测
    • 4.2 Shi-Tomasi角点检测
    • 4.3 sift算法
    • 4.4 fast检测算法
    • 4.5 orb角点检测
  • 五、视频操作
    • 5.1 视频读写
    • 5.2 视频保存
    • 5.3 视频追踪
      • 5.3.1 meanshift算法
      • 5.3.2 camshift算法
  • 六、人脸、眼睛检测案例
    • 6.1 人脸以及眼睛检测(图片)
    • 6.2 人脸以及眼睛检测(视频)

一、OpenCV简介

1.1 简介

OpenCV是⼀个计算机视觉处理开源软件库,⽀持与计算机视觉和机器学习相关的众多算法。

1.2 OpenCV部署

  1. 创建虚拟环境
    在Anaconda终端中创建虚拟环境OpenCV_env
conda create --name OpenCV_env

在这里插入图片描述

  1. 激活虚拟环境
conda activate OpenCV_env

在这里插入图片描述

  1. 安装OpenCV

安装OpenCV之前需要先安装numpy, matplotlib

pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

如果我们要利用SIFT和SURF算法进行特征提取时,还需安装:

pip install opencv-contrib-python -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

  1. 查看是否安装成功
import cv2
cv2.__version__

在这里插入图片描述

1.3 OpenCV模块

  • core模块实现了最核心的数据结构及其基本运算,如绘图函数、数组操作相关函数等。
  • highgui模块实现了视频与图像的读取、显示、存储等接口。
  • imgproc模块实现了图像处理的基础方法,包括图像滤波、图像的几何变换、平滑、阈值分割、形态学处理、边缘检测、目标检测、运动分析和对象跟踪等。
  • features2d模块用于提取图像特征以及特征匹配,nonfree模块实现了一些专利算法,如sift特征。
  • objdetect模块实现了一些目标检测的功能,经典的基于Haar、LBP特征的人脸检测,基于HOG的行人、汽车等目标检测,分类器使用CascadeClassification(级联分类)和Latent SVM等。

二、OpenCV基本操作

2.1 图像的基本操作

2.1.1 图像的IO操作

# 读取图像
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

#以灰度图的方式读取图像
img = cv.imread("dog.jpg",0)
# 显示图像
# Jupyter Notebook 是一个基于 Web 的交互式计算环境,不支持传统的 GUI 窗口显示
# cv.imshow('image',img)
# cv.waitKey(0)
plt.imshow(img,cmap='gray')

在这里插入图片描述

# 以彩色图的方式读取图像
img1 = cv.imread("dog.jpg",1)
# img1[:,:,::-1]将BGR图像转换为RGB图像
plt.imshow(img1[:,:,::-1])

使用cv.imread()读取的图像是BGR,而matplot使用是的RGB图像
在这里插入图片描述

img.shape

在这里插入图片描述

# 图像保存
cv.imwrite('dog1.jpg',img)

在这里插入图片描述

2.1.2 绘制几何图像

# 创建图像
img = np.zeros((512,512,3),np.uint8)
# 直线的起点、终点、颜色、宽度
cv.line(img,(0,0),(512,512),(255,0,0),5)
# 圆形的圆心、半径、颜色、填充、宽度
cv.circle(img,(250,250),130,(0,255,0),-1,5)
# 矩形的左上角、右下角、颜色、宽度
cv.rectangle(img,(50,50),(450,450),(0,0,255),5)
# 图像中添加文字  文本、位置、字体、字体大小、颜色、宽度
cv.putText(img,"OpenCV",(130,250),cv.FONT_HERSHEY_COMPLEX,2,(255,0,255),2)
plt.imshow(img[:,:,::-1])
plt.show()

在这里插入图片描述

2.1.3 获取并修改图像的像素点

img2 = np.zeros((250,250,3),np.uint8)
plt.imshow(img2[:,:,::-1])

在这里插入图片描述

# 获取位置(50,200)的像素点
img2[50,200]

在这里插入图片描述

#获取位置(50,100)蓝色通道的强度值,0表示蓝色,1表示绿色,2表示红色
img2[50,100,0]

在这里插入图片描述

# 修改位置(50,100)的像素值
img2[50,100] = [255,0,0]
plt.imshow(img2[:,:,::-1])

在这里插入图片描述

2.1.4 获取图像的属性

img2.shape

在这里插入图片描述

img2.size

在这里插入图片描述

img2.dtype

在这里插入图片描述

2.1.5 图像通道的拆分和合并

# 通道拆分
b,g,r = cv.split(img1)
plt.imshow(b,cmap='gray')

在这里插入图片描述

# 通道合并
img3 = cv.merge((b,g,r))
plt.imshow(img3[:,:,::-1])

在这里插入图片描述

2.1.6 色彩空间的改变

# 将BGR通道图像转变为HSV通道图像
img3 = cv.cvtColor(img1,cv.COLOR_BGR2HSV)
plt.imshow(img3[:,:,::-1])

在这里插入图片描述

# 将BGR通道图像变为GRAY通道图像
img4 = cv.cvtColor(img1,cv.COLOR_BGR2GRAY)
plt.imshow(img4,cmap='gray')

在这里插入图片描述

2.2 算数操作

2.2.1 图像的加法

# 读取图像
img_sun = cv.imread('sun.jpg')
img_tree = cv.imread('tree.jpg')
plt.imshow(img_tree[:,:,::-1])

在这里插入图片描述

plt.imshow(img_sun[:,:,::-1])

在这里插入图片描述

# 查看图像形状
img_sun.shape,img_tree.shape

在这里插入图片描述
形状相同才能进行相加

# 缩小图形形状
img_sun = cv.resize(img_sun,(350,251))
img_sun.shape

在这里插入图片描述

# 加法操作
img_cvadd = cv.add(img_sun,img_tree)
img_add = img_sun+img_tree
fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img_cvadd[:,:,::-1])
axes[0].set_title("cv中的加法")
axes[1].imshow(img_add[:,:,::-1])
axes[1].set_title("直接相加")
plt.show()

在这里插入图片描述

2.2.2 图像的混合

# 读取图像
img_sun = cv.imread('sun.jpg')
img_tree = cv.imread('tree.jpg')

# 缩小图形形状
img_sun = cv.resize(img_sun,(350,251))

# 图像混合,gamma参数会影响最终图像的亮度
img5 = cv.addWeighted(img_sun,0.3,img_tree,0.7,0)

# 图像的显示
plt.imshow(img5[:,:,::-1])
plt.show()

在这里插入图片描述

三、OpenCV图像处理

3.1 图像的几何变换

import cv2 as cv
import matplotlib.pyplot as plt
  1. 图像缩放
# 读取图片
img = cv.imread('dog.jpg')

# 图像缩放
# 绝对尺寸
rows,cols = img.shape[:2]
res = cv.resize(img,(2*cols,2*rows))
# 相对尺寸
res1 = cv.resize(img,None,fx=0.5,fy=0.5)

# 图像显示
fig,axes = plt.subplots(1,3,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原始图像")
axes[1].imshow(res[:,:,::-1])
axes[1].set_title("绝对尺寸")
axes[2].imshow(res1[:,:,::-1])
axes[2].set_title("相对尺寸")
plt.show()

在这里插入图片描述

  1. 图像平移
import numpy as np

img = cv.imread('dog.jpg')

# 像素点平移(50,100)
rows,cols = img.shape[:2]
# 平移矩阵
m = np.float32([[1,0,50],[0,1,100]])
res = cv.warpAffine(img,m,(cols,rows))

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原始图像")
axes[1].imshow(res[:,:,::-1])
axes[1].set_title("平移后图像")
plt.show()

在这里插入图片描述

  1. 图像旋转
img = cv.imread("dog.jpg")

rows,cols = img.shape[:2]
# 旋转矩阵
m = cv.getRotationMatrix2D((cols//2,rows//2),90,0.5)
res = cv.warpAffine(img,m,(cols,rows))

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原始图像")
axes[1].imshow(res[:,:,::-1])
axes[1].set_title("旋转后图像")
plt.show()

在这里插入图片描述

  1. 仿射变换
rows,cols = img.shape[:2]
# 原点集
pts1 = np.float32([[50,50],[200,50],[50,200]])
# 目标点集
pts2 = np.float32([[100,100],[200,50],[100,250]])
# 仿射变化矩阵
m = cv.getAffineTransform(pts1,pts2)

res = cv.warpAffine(img,m,(cols,rows))

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原始图像")
axes[1].imshow(res[:,:,::-1])
axes[1].set_title("仿射后图像")
plt.show()

在这里插入图片描述

  1. 投射变换
img = cv.imread("dog.jpg")

rows,cols = img.shape[:2]
# 投射变换矩阵
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[100,145],[300,100],[80,290],[310,300]])
m = cv.getPerspectiveTransform(pts1,pts2)
# 进行变换
res = cv.warpPerspective(img,m,(cols,rows))

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图像")
axes[1].imshow(res[:,:,::-1])
axes[1].set_title("仿射后图像")
plt.show()

在这里插入图片描述

  1. 图像金字塔
img = cv.imread("dog.jpg")

# 上采样
img_up = cv.pyrUp(img)
# 下采样
img_down = cv.pyrDown(img)

fig,axes = plt.subplots(1,3,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图像")
axes[1].imshow(img_up[:,:,::-1])
axes[1].set_title("上采样图像")
axes[2].imshow(img_down[:,:,::-1])
axes[2].set_title("下采样图像")
plt.show()

在这里插入图片描述

3.2 图像的形态学操作

  1. 膨胀和腐蚀
img = cv.imread("img_five.jpg")

# 创建核结构
kernel = np.ones((5,5),np.uint8)

# 腐蚀
erode = cv.erode(img,kernel)
# 膨胀
dilate = cv.dilate(img,kernel)

fig,axes = plt.subplots(1,3,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图像")
axes[1].imshow(erode[:,:,::-1])
axes[1].set_title("腐蚀后图像")
axes[2].imshow(dilate[:,:,::-1])
axes[2].set_title("膨胀后图像")
plt.show()

在这里插入图片描述

  1. 开闭运算
img_1 = cv.imread('img1.png')
img_2 = cv.imread('img2.png')

kernel = np.ones((10,10),np.uint8)
Open = cv.morphologyEx(img_1,cv.MORPH_OPEN,kernel)
Close = cv.morphologyEx(img_2,cv.MORPH_CLOSE,kernel)

fig,axes = plt.subplots(2,2,figsize=(10,8))
axes[0][0].imshow(img_1[:,:,::-1])
axes[0][0].set_title("原图像")
axes[0,1].imshow(Open[:,:,::-1])
axes[0,1].set_title("开运算图像")
axes[1,0].imshow(img_2[:,:,::-1])
axes[1,0].set_title("原图像")
axes[1,1].imshow(Close[:,:,::-1])
axes[1,1].set_title("闭运算图像")
plt.show()

在这里插入图片描述

  1. 礼貌和黑帽
img_1 = cv.imread("img1.png")
img_2 = cv.imread("img2.png")

kernel = np.ones((10,10),np.uint8)
Open = cv.morphologyEx(img_1,cv.MORPH_TOPHAT,kernel)
Close = cv.morphologyEx(img_2,cv.MORPH_BLACKHAT,kernel)

fig,axes = plt.subplots(2,2,figsize=(10,8))
axes[0][0].imshow(img_1[:,:,::-1])
axes[0][0].set_title("原图像")
axes[0,1].imshow(Open[:,:,::-1])
axes[0,1].set_title("礼帽运算结果")
axes[1,0].imshow(img_2[:,:,::-1])
axes[1,0].set_title("原图像")
axes[1,1].imshow(Close[:,:,::-1])
axes[1,1].set_title("黑帽运算结果")
plt.show()

在这里插入图片描述

3.3 图像的平滑

img_girl= cv.imread("girl_img.png")

# 均值滤波
blur = cv.blur(img_girl,(7,7))
# 高斯滤波
gaublur = cv.GaussianBlur(img_girl,(9,9),0)
# 中值滤波
medblur = cv.medianBlur(img_girl,5)

fig,axes = plt.subplots(2,2,figsize=(10,8))
axes[0][0].imshow(img_girl[:,:,::-1])
axes[0][0].set_title("原图像")
axes[0,1].imshow(blur[:,:,::-1])
axes[0,1].set_title("均值滤波运算结果")
axes[1,0].imshow(gaublur[:,:,::-1])
axes[1,0].set_title("高斯滤波结果")
axes[1,1].imshow(medblur[:,:,::-1])
axes[1,1].set_title("中值滤波结果")
plt.show()

在这里插入图片描述

3.4 直方图

3.1.4 灰度直方图

  1. 直方图的计算和绘制
img_dog = cv.imread("dog.jpg",0)

# 统计灰度图
histr = cv.calcHist(img_dog,[0],None,[256],[0,256])

fig,axes = plt.subplots(1,2,figsize=(18,6))
axes[0].imshow(img_dog,cmap='gray')
axes[1].plot(histr)
axes[1].grid()
axes[1].set_xlabel('Pixel Value')
axes[1].set_ylabel('Frequency')
# 调整布局
plt.tight_layout()
plt.show()

在这里插入图片描述

  1. 掩码的应用
img_dog1 = cv.imread("dog.jpg",0)

# 创建遮挡
mask = np.zeros(img_dog1.shape[:2],np.uint8)
mask[50:130,150:230] = 255

# 进行按位与运算
mask_img = cv.bitwise_and(img_dog1,img_dog1,mask=mask)

mask_histr = cv.calcHist([img_dog1],[0],mask,[256],[0,256])

fig,axes = plt.subplots(2,2,figsize=(10,8))
axes[0,0].imshow(img_dog1,cmap='gray')
axes[0,0].set_title("原图")
axes[0,1].imshow(mask,cmap='gray')
axes[0,1].set_title("遮挡")
axes[1,0].imshow(mask_img,cmap="gray")
axes[1,0].set_title("遮挡后数据")
axes[1,1].plot(mask_histr)
axes[1,1].set_title("灰度直方图")
plt.show()

在这里插入图片描述

3.1.5 直方图均衡化

  1. 应用
img_dog = cv.imread("dog.jpg",0)

dst = cv.equalizeHist(img_dog)

fig,axes = plt.subplots(1,2,figsize=(18,6))
axes[0].imshow(img_dog,cmap='gray')
axes[0].set_title("原图")
axes[1].imshow(dst,cmap='gray')
axes[1].set_title("均衡化后的结果")
# plt.tight_layout()
plt.show()

在这里插入图片描述

  1. 自适应的直方图均衡化
img_dog = cv.imread("dog.jpg",0)

clahe = cv.createCLAHE(clipLimit=2,tileGridSize=(12,12))
cl1 = clahe.apply(img_dog)

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img_dog,cmap="gray")
axes[0].set_title("原图")
axes[1].imshow(cl1,cmap="gray")
axes[1].set_title("自适应后图像")
plt.show()

3.5 边缘检测

3.5.1 Sobel检测算子

import cv2 as cv 
import matplotlib.pyplot as plt
import numpy as np
img_horse = cv.imread("horse.jpg",0)

# 计算Sobel卷积结果(边缘检测)
x = cv.Sobel(img_horse,cv.CV_16S,1,0)
y = cv.Sobel(img_horse,cv.CV_16S,0,1)

# 数据转换(将其缩放到uint8)
scale_x = cv.convertScaleAbs(x)
scale_y = cv.convertScaleAbs(y)

# 结果合成 gamma为正亮度增加,0亮度不变,负数亮度降低
res = cv.addWeighted(scale_x,0.5,scale_y,0.5,0)

fig,axes = plt.subplots(1,2,figsize=(9,10))
axes[0].imshow(img_horse,cmap='gray')
axes[0].set_title("原图")
axes[1].imshow(res,cmap=plt.cm.gray)
axes[1].set_title("Sobel滤波后结果")
plt.show()

在这里插入图片描述

# ksize为-1时,使用3x3的Scharr滤波器
x = cv.Sobel(img_horse,cv.CV_16S,1,0,ksize=-1)
y = cv.Sobel(img_horse,cv.CV_16S,0,1,ksize=-1)

scale_x = cv.convertScaleAbs(x)
scale_y = cv.convertScaleAbs(y)
res = cv.addWeighted(scale_x,0.5,scale_y,0.5,0)

fig,axes = plt.subplots(1,2,figsize=(9,10))
axes[0].imshow(img_horse,cmap='gray')
axes[0].set_title("原图")
axes[1].imshow(res,cmap=plt.cm.gray)
axes[1].set_title("Scharr滤波后结果")
plt.show()

在这里插入图片描述

3.5.2 Laplacian算子

img_horse = cv.imread("horse.jpg",0)

res = cv.Laplacian(img_horse,cv.CV_16S,ksize=3)
scale_res = cv.convertScaleAbs(res)

fig,axes = plt.subplots(1,2,figsize=(9,10))
axes[0].imshow(img_horse,cmap='gray')
axes[0].set_title("原图")
axes[1].imshow(scale_res,cmap=plt.cm.gray)
axes[1].set_title("Laplacian滤波后结果")
plt.show()

在这里插入图片描述

3.5.3 Canny边缘检测

img_horse = cv.imread("horse.jpg",0)

# Canny边缘检测,min_threshold最小阈值
min_threshold = 20
max_threshold = 100
res = cv.Canny(img_horse,min_threshold,max_threshold)

fig,axes = plt.subplots(1,2,figsize=(9,10))
axes[0].imshow(img_horse,cmap='gray')
axes[0].set_title("原图")
axes[1].imshow(res,cmap=plt.cm.gray)
axes[1].set_title("Canny滤波后结果")
plt.show()

在这里插入图片描述

3.6 模板匹配和霍夫变换的应用

3.6.1 模板匹配

img_party = cv.imread("party.jpg")
template = cv.imread("template.jpg")

h,w = template.shape[:2]

# 模板匹配
res = cv.matchTemplate(img_party,template,cv.TM_SQDIFF)
# 返回图像最佳匹配位置,确定左上角的坐标
min_val,max_val,min_loc,max_loc = cv.minMaxLoc(res)

# 使用平方差时(cv.TM_SQDIFF)最小值为最佳匹配位置
top_left = min_loc
bottom_right = (top_left[0]+h,top_left[1]+w)

cv.rectangle(img_party,top_left,bottom_right,(0,255,0),2)
fig,axes = plt.subplots(1,2,figsize=(10,8),gridspec_kw={'width_ratios': [1, 6]})
axes[0].imshow(template[:,:,::-1])
axes[0].set_title("匹配模板")
axes[1].imshow(img_party[:,:,::-1])
axes[1].set_title("匹配结果")
plt.tight_layout()
plt.show()

在这里插入图片描述

3.6.2 霍夫变换

# 读取图像
img_rili = cv.imread("rili.jpg")

# 使用Canny转换为二值图
gray = cv.cvtColor(img_rili,cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray,100,200)

# 霍夫直线变换
lines = cv.HoughLines(edges,0.8,np.pi/180,150)

# 检查是否检测到直线
for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 - 1000 * b)
    y1 = int(y0 + 1000 * a)
    x2 = int(x0 + 1000 * b)
    y2 = int(y0 - 1000 * a)
    cv.line(img_rili, (x1, y1), (x2, y2), (0, 0, 255), 2)

# 使用matplotlib显示图像
plt.imshow(img_rili[:, :, ::-1])
plt.xticks([]), plt.yticks([])
plt.title("霍夫变换直线检测")
plt.show()

在这里插入图片描述

3.7 图像变化

3.7.1 傅里叶变换

读取图像: 读取图像并转换为灰度图像。 傅里叶变换: 正变换:将图像转换为频域表示。 频谱中心化:将频谱的低频部分移到中心,高频部分移到四周。 计算频谱和相位谱:将复数形式的频谱转换为幅度和相位,并对幅度谱进行对数变换。 傅里叶逆变换: 反变换:将频域表示转换回时域(或空域)。 计算灰度值:计算逆变换后的图像的幅度。 显示结果: 使用 matplotlib 显示原始图像、频谱图和逆变换后的图像。

img_dog= cv.imread("dog.jpg",0)

# 傅里叶正变换,cv.DFT_COMPLEX_OUTPUT:指定输出为复数形式
dft = cv.dft(np.float32(img_dog),flags=cv.DFT_COMPLEX_OUTPUT)
# 频谱中心化
dft_shift = np.fft.fftshift(dft)

# 计算频谱和相位谱
mag,angle = cv.cartToPolar(dft_shift[:,:,0],dft_shift[:,:,-1],angleInDegrees=True)
# 对幅度谱进行对数变换,以便更好地可视化。对数变换可以压缩动态范围,使图像的细节更明显。
mag = 20 * np.log(mag)

# 傅里叶反变换
img_back = cv.idft(dft)
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])

fig,axes = plt.subplots(2,2,figsize=(10,8))
axes[0,0].imshow(img_dog,cmap='gray')
axes[0,0].set_title("原图")
axes[0,1].imshow(mag,cmap='gray')
axes[0,1].set_title("频谱")
axes[1,0].imshow(angle,cmap='gray')
axes[1,0].set_title("相位谱")
axes[1,1].imshow(img_back,cmap='gray')
axes[1,1].set_title("逆变换结果")
plt.show()

在这里插入图片描述

3.7.2 高通和低通滤波

# 高通滤波
dog_img = cv.imread("dog.jpg",0)

rows,cols = dog_img.shape
mask = np.ones((rows,cols,2),np.uint8)
mask[int(rows/2)-30:int(rows/2)+30,int(cols/2)-30:int(cols/2)+30,:] = 0

# 正变换
dft = cv.dft(np.float32(dog_img),flags=cv.DFT_COMPLEX_OUTPUT)
# 频谱中心化
dft_shift = np.fft.fftshift(dft)
# 滤波(移除低频)
dft_shift = dft_shift * mask
# 频谱中心化
dft_shift = np.fft.fftshift(dft_shift)

# 反变化
img_back = cv.idft(dft_shift)
# 计算灰度值
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(dog_img, cmap = 'gray') 
axes[0].set_title('原图')
axes[1].imshow(img_back, cmap = 'gray')
axes[1].set_title('高通滤波结果')
plt.show()

在这里插入图片描述

# 低通滤波
dog_img = cv.imread("dog.jpg",0)

rows,cols = dog_img.shape
mask = np.zeros((rows,cols,2),np.uint8)
mask[int(rows/2)-30:int(rows/2)+30,int(cols/2)-30:int(cols/2)+30,:] = 1

# 正变换
dft = cv.dft(np.float32(dog_img),flags=cv.DFT_COMPLEX_OUTPUT)
# 频谱中心化
dft_shift = np.fft.fftshift(dft)
# 滤波(移除低频)
dft_shift = dft_shift * mask
# 频谱中心化
dft_shift = np.fft.fftshift(dft_shift)

# 反变化
img_back = cv.idft(dft_shift)
# 计算灰度值
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(dog_img, cmap = 'gray') 
axes[0].set_title('原图')
axes[1].imshow(img_back, cmap = 'gray')
axes[1].set_title('低通滤波结果')
plt.show()

在这里插入图片描述

3.7.3 带通和带阻滤波

# 带通滤波
dog_img = cv.imread("dog.jpg",0)

rows,cols = dog_img.shape
mask1 = np.ones((rows,cols,2),np.uint8)
mask1[int(rows/2)-8:int(rows/2)+8,int(cols/2)-8:int(cols/2)+8] = 0
mask2 = np.zeros((rows,cols,2),np.uint8)
mask2[int(rows/2)-80:int(rows/2)+80,int(cols/2)-80:int(cols/2)+80] = 1
mask = mask1*mask2

# 正变换
dft = cv.dft(np.float32(dog_img),flags=cv.DFT_COMPLEX_OUTPUT)
# 频谱中心化
dft_shift = np.fft.fftshift(dft)
# 滤波(移除低频)
dft_shift = dft_shift * mask
# 频谱中心化
dft_shift = np.fft.fftshift(dft_shift)

# 反变化
img_back = cv.idft(dft_shift)
# 计算灰度值
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(dog_img, cmap = 'gray') 
axes[0].set_title('原图')
axes[1].imshow(img_back, cmap = 'gray')
axes[1].set_title('带通滤波结果')
plt.show()

在这里插入图片描述

# 带阻滤波
dog_img = cv.imread("dog.jpg",0)

rows,cols = dog_img.shape
mask = np.ones((rows,cols,2),np.uint8)
mask[int(rows/2)+60:int(rows/2)+130,int(cols/2)-130:int(cols/2)+130] = 0
mask[int(rows/2)-130:int(rows/2)-60,int(cols/2)-130:int(cols/2)+130] = 0
mask[int(rows/2)-130:int(rows/2)+130,int(cols/2)+60:int(cols/2)+130] = 0
mask[int(rows/2)-130:int(rows/2)+130,int(cols/2)-130:int(cols/2)-60] = 0

# 正变换
dft = cv.dft(np.float32(dog_img),flags=cv.DFT_COMPLEX_OUTPUT)
# 频谱中心化
dft_shift = np.fft.fftshift(dft)
# 滤波(移除低频)
dft_shift = dft_shift * mask
# 频谱中心化
dft_shift = np.fft.fftshift(dft_shift)

# 反变化
img_back = cv.idft(dft_shift)
# 计算灰度值
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(dog_img, cmap = 'gray') 
axes[0].set_title('原图')
axes[1].imshow(img_back, cmap = 'gray')
axes[1].set_title('带阻滤波结果')
plt.show()

在这里插入图片描述

3.8 轮廓检测与轮廓特征

3.8.1 轮廓检测

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
ditu = cv.imread("ditu.jpg")
# 复制原图
img_ditu = ditu.copy()
imggray = cv.cvtColor(ditu,cv.COLOR_BGR2GRAY)
canny = cv.Canny(imggray,120,255)

# 轮廓提取
contours,hierarchy = cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
# 将轮廓绘制在图形上
img = cv.drawContours(ditu,contours,-1,(0,0,255),2)

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img_ditu[:,:,::-1])
axes[0].set_title("原图")
axes[1].imshow(img[:,:,::-1])
axes[1].set_title("轮廓")
plt.show()

在这里插入图片描述

3.8.2 轮廓特征

  1. 轮廓面积
area = sum(cv.contourArea(cnt) for cnt in contours)
area

在这里插入图片描述

  1. 轮廓周长
perimeter = sum(cv.arcLength(cnt,True) for cnt in contours)
perimeter

在这里插入图片描述

  1. 轮廓近似
# 读取图像
img = cv.imread("jinsi.jpg")

# 灰度转换
imggray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# 二值化处理
ret, thresh = cv.threshold(imggray, 127, 255, cv.THRESH_BINARY)

# 轮廓提取
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

# 初始化绘制图像
img_contours = img.copy()
img_approx = img.copy()

# 处理所有轮廓
for cnt in contours:
    # 计算轮廓的弧长
    arc_length = cv.arcLength(cnt, True)
    
    # 计算近似多边形
    epsilon = 0.1 * arc_length
    approx = cv.approxPolyDP(cnt, epsilon, True)
    
    # 绘制原始轮廓和近似多边形(-1表示绘制所有轮廓)
    img_contours = cv.drawContours(img_contours, [cnt], -1, (0, 255, 0), 2)
    img_approx = cv.drawContours(img_approx, [approx], -1, (0, 255, 0), 2)

# 显示图像
fig, axes = plt.subplots(1, 3, figsize=(10, 13))
axes[0].imshow(ditu[:, :, ::-1])
axes[0].set_title("原图")
axes[1].imshow(img_contours[:, :, ::-1])
axes[1].set_title("原始轮廓")
axes[2].imshow(img_approx[:, :, ::-1])
axes[2].set_title("近似多边形")
plt.show()

在这里插入图片描述

  1. 凸包
star = cv.imread("star.jpg")

# 灰度处理
imggray = cv.cvtColor(star,cv.COLOR_BGR2GRAY)
# 边缘检测
canny = cv.Canny(imggray,50,200)

# 获取轮廓
contours,hierarchy = cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)

# 图像复制
img_star = star.copy()

#凸包检测
Hulls = []
for cnt in contours:
    hull = cv.convexHull(cnt)
    Hulls.append(hull)

# 绘制图形
img_contour = cv.drawContours(star,contours,-1,(255,0,0),2)
img_hull = cv.drawContours(img_star,Hulls,-1,(255,0,0),2)

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img_contour[:,:,::-1])
axes[0].set_title("轮廓检测结果")
axes[1].imshow(img_hull[:,:,::-1])
axes[1].set_title("凸包结果")
plt.show()

在这里插入图片描述

  1. 边界矩形
rect = cv.imread("rect.jpg")

# 灰度处理
imggray = cv.cvtColor(rect,cv.COLOR_BGR2GRAY)
# 转换为二值化
ret,thresh = cv.threshold(imggray,127,255,0)

# 轮廓提取
contours,hierarchy = cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)

# 图像复制
rect_img = rect.copy()

# 直边界矩形
bounding_box = []
for cnt in contours:
    x,y,w,h = cv.boundingRect(cnt)
    bounding_box.append((x,y,w,h))
for x,y,w,h in bounding_box:
    cv.rectangle(rect,(x,y),(x+w,y+h),(0,255,0),2)


# 旋转边界矩形
min_area_rects = []
for cnt in contours:
    rect_min = cv.minAreaRect(cnt)
    box = cv.boxPoints(rect_min)
    box = np.int0(box)
    min_area_rects.append(box)
for box in min_area_rects:
    cv.polylines(rect_img,[box],True,(0,255,0),2)


fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(rect[:,:,::-1])
axes[0].set_title("直边界矩形")
axes[0].set_xticks([]),axes[0].set_yticks([])
axes[1].imshow(rect_img[:,:,::-1])
axes[1].set_title("旋转边界矩形")
axes[1].set_xticks([]),axes[1].set_yticks([])
plt.show()

在这里插入图片描述

  1. 最小外接圆
img = cv.imread("rect.jpg")

imggray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh = cv.threshold(imggray,127,255,0)

contours,hierarchy = cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)

boundings = []
for cnt in contours:
    (x,y),radius = cv.minEnclosingCircle(cnt)
    center = (int(x),int(y))
    radius = int(radius)
    boundings.append((center,radius))
for center,radius in boundings:
    cv.circle(img,center,radius,(0,255,0),2)

plt.imshow(img[:,:,::-1])
plt.xticks([])
plt.yticks([])
plt.show()

在这里插入图片描述

  1. 椭圆拟合
img = cv.imread("rect.jpg")

imggray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
ret,thresh = cv.threshold(imggray,127,255,0)

contours,hierarchy = cv.findContours(thresh,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)

boundings = []
for cnt in contours:
    # 过滤掉点数少于5个和面积过小的轮廓
    if len(cnt) >= 5 and cv.contourArea(cnt) > 100:
        ellipse = cv.fitEllipse(cnt)
        boundings.append(ellipse)
for ellipse in boundings:
    cv.ellipse(img,ellipse,(0,255,0),2)

plt.imshow(img[:,:,::-1])
plt.xticks([])
plt.yticks([])
plt.show()

在这里插入图片描述

3.9 图像分割

3.9.1 全阈值分割

img = cv.imread("gradient.jpg",0)

ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)

titles = ["原图","阈值二值化","阈值反二值化","截断","阈值取零","阈值反取零"]
images = [img,thresh1,thresh2,thresh3,thresh4,thresh5]
plt.figure(figsize=(10,8))
for i in range(6):
    plt.subplot(2,3,i+1)
    plt.imshow(images[i],cmap='gray')
    plt.title(titles[i])

plt.show()

在这里插入图片描述

3.9.2 自适应阈值分割

fruit = cv.imread("fruit.jpg",0)

# 固定阈值
ret,threshold = cv.threshold(fruit,127,225,cv.THRESH_BINARY)
# 自适应阈值
# 领域内求平均值
th1 = cv.adaptiveThreshold(fruit,255,cv.ADAPTIVE_THRESH_MEAN_C,cv.THRESH_BINARY,11,4)
# 领域内高斯加权
th2 = cv.adaptiveThreshold(fruit,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,17,6)

title = ["原图","固定阈值","自适应阈值(求均值)","自适应阈值(高斯加权)"]
images = [fruit,threshold,th1,th2]

plt.figure(figsize=(10,8))
for i in range(4):
    plt.subplot(2,2,i+1)
    plt.imshow(images[i],cmap="gray")
    plt.title(title[i])
plt.show()

在这里插入图片描述

3.9.3 Ostu阈值(大律法)

littledog = cv.imread("littledog.jpg",0)

# 固定阈值
ret,thresh = cv.threshold(littledog,40,255,cv.THRESH_BINARY)
# ostu分割
ret1,thresh2 = cv.threshold(littledog,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)

fig,axes = plt.subplots(1,3,figsize=(10,8))
axes[0].imshow(littledog,cmap="gray")
axes[0].set_title("原图")
axes[1].imshow(thresh,cmap="gray")
axes[1].set_title("全阈值分割")
axes[2].imshow(thresh2,cmap="gray")
axes[2].set_title("OStu分割")
plt.show()

在这里插入图片描述

3.9.4 分水岭算法

img = cv.imread("horse.jpg")

imggray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 边缘检测
canny = cv.Canny(imggray,127,255)
# 轮廓检测
contours,hierarchy = cv.findContours(canny,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)
# 初始化标记图像
marks = np.zeros(img.shape[:2],np.int32)

# 绘制轮廓
for index in range(len(contours)):
    # index:-1 绘制所有的轮廓,非负数:要绘制的轮廓的索引
    marks = cv.drawContours(marks,contours,index,(index,index,index),1,8,hierarchy)

# 使用分水岭算法
# img必须是8位无符号整数的三通道图像,marks必须是32位有符号整数的单通道图像
# 返回值:正整数:表示该像素属于某个特定区域,-1表示该像素是区域的边界
marks = cv.watershed(img,marks)

# 生成随机颜色
colours = np.zeros((np.max(marks) + 1,3))
for i in  range(len(colours)):
    aa = np.random.uniform(0,255)
    bb = np.random.uniform(0,255)
    cc = np.random.uniform(0,255)
    colours[i] = np.array([aa,bb,cc],np.uint8)

# 对每个区域进行颜色填充
bgrimg = np.zeros(img.shape,np.uint8)
index = 0
for i in range(marks.shape[0]):
    for j in range(marks.shape[1]):
        index = marks[i][j]
        if index == -1:
            bgrimg[i][j] = np.array([255,255,255])
        else:
            bgrimg[i][j] = colours[index]

plt.imshow(bgrimg[:,:,::-1])
plt.title("图像分割结果")
plt.show()

在这里插入图片描述

3.9.5 GrabCut算法

img = cv.imread("liying.jpg")

masks = np.zeros(img.shape[:2],np.uint8)
# 矩形窗口,指定前景区域
rect = [260,50,740,730]

# 前景和背景分割
cv.grabCut(img,masks,tuple(rect),None,None,30,cv.GC_INIT_WITH_RECT)

# 抠取图像
mask2 = np.where((masks==2)|(masks==0),0,1).astype("uint8")
img_show = img * mask2[:,:,np.newaxis]
# 将矩形绘制在图像上
cv.rectangle(img,(260,50),(1000,780),(255,0,0),2)

fig,axes = plt.subplots(1,2,figsize=(10,8))
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("矩形框选位置")
axes[1].imshow(img_show[:,:,::-1])
axes[1].set_title("扣取结果")
plt.show()

在这里插入图片描述

四、图像的特征提取与描述

  1. 图像特征要有区分性,容易被比较。一般认为角点、斑点等是比较好的图像特征
  2. 特征检测:找到图像中的特征
  3. 特征描述:对特征及其周围的区域描述

4.1 Harris角点检测

Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度明显变化。

import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np
# 对棋盘进行角点检测
qipan = cv.imread("qipan.jpg")

gray = cv.cvtColor(qipan,cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
# Harris角点检测
# 2,blockSize计算每个像素的角点响应时考虑的窗口大小
# 3,Sobel 算子用于计算图像的梯度,进而用于计算角点响应。
# 0.04,用于平衡角点检测的灵敏度
dst = cv.cornerHarris(gray,2,3,0.04)
# 设置阈值,选择 dst 中角点响应值大于阈值的像素位置
qipan[dst > 0.001*dst.max()] = [0,255,0]

plt.figure(figsize=(10,8))
plt.imshow(qipan[:,:,::-1])
plt.show()

在这里插入图片描述

4.2 Shi-Tomasi角点检测

tv = cv.imread("tv.jpg")
gray = cv.cvtColor(tv,cv.COLOR_BGR2GRAY)

# 提取角坐标
conners = cv.goodFeaturesToTrack(gray,1000,0.01,10)
# 绘制角点
for i in conners:
    # 将坐标展平为一维
    x,y = i.ravel()
    x,y = int(x),int(y)
    cv.circle(tv,(x,y),3,(0,255,0),-1)

plt.figure(figsize=(10,8))
plt.imshow(tv[:,:,::-1])
plt.show()

在这里插入图片描述

4.3 sift算法

通过多尺度空间检测极值点作为关键点,确保尺度不变性;再对关键点邻域进行方向赋值,确保旋转不变性,从而实现对图像特征的稳定提取。

tv = cv.imread("tv.jpg")

gray = cv.cvtColor(tv,cv.COLOR_BGR2GRAY)

# 实例化shif
sift = cv.xfeatures2d.SIFT_create()
# 角点检测:kp角点的信息包括坐标,方向等   des角点描述
kp, des = sift.detectAndCompute(gray,None)
# 绘制角点
cv.drawKeypoints(tv,kp,tv,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

plt.figure(figsize=(10,8))
plt.imshow(tv[:,:,::-1])
plt.show()

在这里插入图片描述

4.4 fast检测算法

若一个像素周围有一定数量的像素与该点像素值不同,则认为其为角点

tv = cv.imread("tv.jpg")

# 实例化fast对象
fast = cv.FastFeatureDetector_create(threshold=30)
# 检测关键的
kp = fast.detect(tv,None)
# 绘制关键点,默认开启非极大值抑制,抑制候选角点的重叠
img1 = cv.drawKeypoints(tv,kp,None,(0,0,255))

# 关闭非极大值抑制
fast.setNonmaxSuppression(0)
kp = fast.detect(tv,None)
img2 = cv.drawKeypoints(tv,kp,None,(0,0,255))

plt.figure(figsize=(10,8))
plt.subplot(121)
plt.imshow(img1[:,:,::-1])
plt.title("开启非极大值抑制")
plt.subplot(122)
plt.imshow(img2[:,:,::-1])
plt.title("关闭非极大值抑制")
plt.show()

在这里插入图片描述

4.5 orb角点检测

tv = cv.imread("tv.jpg")

# 实例化ORB
# nfeatures设置要检测的最大特征点数量
orb = cv.ORB_create(nfeatures=200)
# 角点检测 
kp,des = orb.detectAndCompute(tv,None)
# 绘制角点
cv.drawKeypoints(tv,kp,tv,(0,255,0))

plt.figure(figsize=(5,4))
plt.imshow(tv[:,:,::-1])
plt.show()

在这里插入图片描述

五、视频操作

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

5.1 视频读写

video_ying = cv.VideoCapture("赵丽颖.mp4")
# 查看是否捕获成功
video_ying.isOpened()

在这里插入图片描述

# 判断是否读取成功
while(video_ying.isOpened()):
    # 获取每一帧图像
    ret,frame = video_ying.read()
    if ret == True:
        cv.imshow("frame",frame)
    # 每一帧间隔50秒,按q退出
    if cv.waitKey(50) & 0xFF == ord('q'):
        break
# 释放VideoCapture对象,关闭视频文件
video_ying.release()
# 关闭OpenCV所创建的窗口
cv.destroyAllWindows()

5.2 视频保存

# 读取视频
cap = cv.VideoCapture("赵丽颖.mp4")

# 获取图像的属性(宽度和高度),并将其转换为整数
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))

# 创建保存视频的对象,设置编码格式,帧率,图像的宽度和高度
out = cv.VideoWriter('outpy.avi', cv.VideoWriter_fourcc('M', 'J', 'P', 'G'), 10, (frame_width, frame_height))

# 循环读取视频中的每一帧图像
while True:
    # 获取视频中的每一帧图像
    ret, frame = cap.read()    
    # 如果读取成功,将每一帧图像写入到输出文件中
    if ret == True:
        out.write(frame)
    else:
        break

# 释放资源
cap.release()
out.release()
cv.destroyAllWindows()

5.3 视频追踪

目标:追踪视频中的小柯基

5.3.1 meanshift算法

简单,迭代次数少。但不能适应运动目标的形状和大小的变化

import cv2 as cv
import numpy as np
# 视频捕获
video_dog = cv.VideoCapture('dog.mp4')

# 获取第一帧图像,并指定目标位置
ret, frame = video_dog.read()

# 目标位置(行,高,列,宽)
r, h, c, w = 140, 230, 300, 150
track_window = (c, r, w, h)

# 指定目标的感兴趣区域
roi = frame[r:r+h, c:c+w]

# 计算直方图
# 转换色彩空间(HSV)
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)

# 去除低亮度的值(色调,饱和度,亮度)
mask = cv.inRange(hsv_roi, np.array((0, 100, 52)), np.array((180, 255, 255)))

# 计算直方图
# [0] 只计算第一个通道,即色调(hue)通道的直方图
# [180] 定义直方图bin数量
# [0,180] 计算从0到180之间的色调值的直方图
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])

# 归一化
cv.normalize(roi_hist, roi_hist, 0, 255, cv.NORM_MINMAX)

# 目标追踪
# 设置窗口搜索终止条件:最大迭代次数,窗口中心漂移最小值
term_crit = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1)

while True:
    # 获取每一帧图像
    ret, frame = video_dog.read()
    if ret:
        # 算直方图的反向投影,生成一个概率图 dst,指示当前帧中哪些区域最可能包含目标。
        hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        dst = cv.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

        # 进行Meanshift追踪
        ret, track_window = cv.meanShift(dst, track_window, term_crit)

        # 追踪的位置绘制在视频上,并进行显示
        x, y, w, h = track_window
        img2 = cv.rectangle(frame, (x, y), (x + w, y + h), 255, 2)
        cv.imshow('frame', img2)

        if cv.waitKey(65) & 0xFF == ord('q'):
            break
    else:
        break

video_dog.release()
cv.destroyAllWindows()

5.3.2 camshift算法

camshift算法可以适应目标大小形状的改变,具有较好的追踪效果。但当背景色和目标颜色接近时,容易使目标的区域变大。

import cv2 as cv
import numpy as np

video_dog = cv.VideoCapture('dog.mp4')

# 获取第一帧图像,并指定目标位置
ret, frame = video_dog.read()

# 目标位置
r, h, c, w = 170, 150, 350, 90
track_window = (c, r, w, h)

# 指定目标区域
roi = frame[r:r+h, c:c+w]

# 计算直方图
# 转换色彩空间(HSV)
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)

# 去除低亮度的值(色调,饱和度,亮度)
mask = cv.inRange(hsv_roi, np.array((0, 100, 50)), np.array((180, 255, 255)))

# 计算直方图
# [0] 只计算第一个通道,即色调(hue)通道的直方图
# [180] 定义直方图bin数量
# [0,180] 计算从0到180之间的色调值的直方图
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])

# 归一化
cv.normalize(roi_hist, roi_hist, 0, 255, cv.NORM_MINMAX)

# 目标追踪
# 设置窗口搜索终止条件:最大迭代次数,窗口中心漂移最小值
term_crit = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1)

while True:
    ret, frame = video_dog.read()
    if ret:
        # 计算直方图的反向投影,生成一个概率图 dst,指示当前帧中哪些区域最可能包含目标。
        hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        dst = cv.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

        # CamShift追踪
        ret, track_window = cv.CamShift(dst, track_window, term_crit)

        # 将追踪的位置绘制在视频上,并进行显示
        # pst矩形框的四个坐标
        pts = cv.boxPoints(ret)
        pts = np.intp(pts)
        img2 = cv.polylines(frame,[pts],True, 255,2)
        # 显示图像
        cv.imshow('frame', img2)
        
        if cv.waitKey(60) & 0xFF == ord('q'):
            break
    else:
        break

video_dog.release()
cv.destroyAllWindows()

六、人脸、眼睛检测案例

OpenCV中自带已训练好的检测器,包括面部、眼睛等,都保存在XML中,我们可以通过以下程序找到他们:

import cv2 as cv
print(cv.__file__)

在这里插入图片描述
所有的XML文件都在D:\Anaconda\Lib\site-packages\cv2\data\

6.1 人脸以及眼睛检测(图片)

img = cv.imread("liying2.jpg")
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

# 定义训练器路径
cascade_path = "D:\\Anaconda\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_default.xml"
eye_cascade_path = "D:\\Anaconda\\Lib\\site-packages\\cv2\\data\\haarcascade_eye.xml"

# 实例化人脸级联分类器
face_cas = cv.CascadeClassifier(cascade_path)
# 实例化眼睛级联分类器
eyes_cas = cv.CascadeClassifier(eye_cascade_path)

# 人脸检测
faceRects = face_cas.detectMultiScale(gray,scaleFactor=1.05,minNeighbors=5,minSize=(20,20))
# 遍历人脸
for faceRect in faceRects:
    x,y,w,h = faceRect
    cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
    roi_color = img[x:x+w,y:y+h]
    roi_gray = gray[x:x+w,y:y+h]
    eyes = eyes_cas.detectMultiScale(roi_gray,scaleFactor=1.2, minNeighbors=5, minSize=(30, 30), maxSize=(100, 100))
    for x,y,w,h in eyes:
        cv.rectangle(roi_color,(x,y),(x+w,y+h),(255,0,0),2)

plt.figure(figsize=(7,4))
plt.imshow(img[:,:,::-1])
plt.title("检测结果")
plt.show()

在这里插入图片描述

6.2 人脸以及眼睛检测(视频)

import cv2 as cv
import matplotlib.pyplot as plt

video = cv.VideoCapture("赵丽颖.mp4")

cascade_path = "D:\\Anaconda\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_default.xml"
eyes_cascade_path = "D:\\Anaconda\\Lib\\site-packages\\cv2\\data\\haarcascade_eye.xml"

while True:
    ret,frame = video.read()

    if ret==True:
        gray = cv.cvtColor(frame,cv.COLOR_BGR2GRAY)
        # 实例化人脸级联分类器
        face_cas = cv.CascadeClassifier(cascade_path)
        # 实例化眼睛级联分类器
        eyes_cas = cv.CascadeClassifier(eyes_cascade_path)
        # 检测人脸
        faceRects = face_cas.detectMultiScale(gray,scaleFactor=1.2,minNeighbors=3,minSize=(60,60))
        for faceRect in faceRects:
            x,y,w,h = faceRect
            cv.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)

            roi_color = frame[y:y+h,x:x+w]
            # 定位人脸上半部分
            roi_gray = gray[y:y+int(h*0.7),x:x+w]
            
            eyes = eyes_cas.detectMultiScale(roi_gray,scaleFactor=1.3,minNeighbors=5, minSize=(20,20), maxSize=(100, 100))
            for x,y,w,h in eyes:
                cv.rectangle(roi_color,(x,y),(x+w,y+h),(255,0,0),2)
        cv.imshow("frame",frame)
        if cv.waitKey(20) & 0xFF==ord('q'):
            break
    else:
        break
video.release()
cv.destroyAllWindows()

由于运行结果是视频所以无法展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2187115.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

时间相关数据的统计分析(笔记更新中)

对事件相关数据的统计思路做一个笔记 可以用作肿瘤生长曲线(Tumor Growth Curve)/某一个药物处理后不同时间点表型的获取类型的数据。 总体来说合适的有两类,一类是以ANOVA为基础的方差分析,重复测量资料的方差分析;…

D - Connect the Dots Codeforces Round 976 (Div. 2)

原题 D - Connect the Dots 思路 直接去做的话会超时, 因此用差分去优化 代码 #include <bits/stdc.h> using namespace std;int f[200020]; int z; int b[11][200020];// 并查集的 find 函数 int find(int x) {return f[x] ! x ? f[x] find(f[x]) : x; }// 检查是…

食品饮料小程序搭建私域会员管理

食品饮料是商超主要经营类目之一&#xff0c;多样化的品牌/厂商/渠道/经销商&#xff0c;客户在消费方面购物渠道和选择范围广&#xff0c;无论厂商还是线下门店/线上电商都需要围绕流量/会员开展生意获得更多营收。 小程序开店基于微信平台生态分享宣传、用户店铺方便购物及提…

Flutter与原生代码通信

文章目录 1. 知识回顾2. 示例代码3. 经验总结我们在上一章回中介绍了通道相关的内容,本章回中将介绍其中的一种通道:MethodChannnel.闲话休提,让我们一起Talk Flutter吧。 1. 知识回顾 我们在上一章回中介绍了通道的概念和作用,并且提到了通道有不同的类型,本章回将其中一…

【C++】类与对象基础概念解析

恭喜你学习完C语言与数据结构的有关内容&#xff0c;现在让我们开始进行对C的学习吧~ &#x1f49d;&#x1f49d;&#x1f49d;如果你对C语言或数据结构还存在疑惑&#xff0c;欢迎观看我之前的作品 &#x1f449;【数据结构】 &#x1f449;【C语言】 目录 一、引言 二、类…

【2024年最新】基于springboot+mysql就业信息管理系统

技术摘要 技术框架&#xff1a;以springboot作为框架&#xff0c;业务模式&#xff1a;B/S模式数据库&#xff1a;MySql作为后台运行的数据库服务器&#xff1a;使用Tomcat用为系统的服务器 系统展示 系统实现功能 本次实现一个就业信息管理系统&#xff0c;通过这个系统能够…

vscode安装及c++配置编译

1、VScode下载 VS Code官网下载地址&#xff1a;Visual Studio Code - Code Editing. Redefined。 2、安装中文插件 搜索chinese&#xff0c;点击install下载安装中文插件。 3、VS Code配置C/C开发环境 3.1、MinGW-w64下载 VS Code是一个高级的编辑器&#xff0c;只能用来写代…

嵌入式系统中qt开发 Qdebug输出中文的时候变成了问号 ??? bulideroot制作的根文件系统

嵌入式系统中qt开发 Qdebug输出&#xff1f;&#xff1f;&#xff1f; bulideroot制作的根文件系统 这个问题我找了三四天了&#xff0c;因为的字符也配置了 /etc/profile中qt的环境变量我也配置了 我的/usr/share/fonts也是有字库的&#xff0c;但是qt输出的中文全是&#…

windows 11 LTSC 26100.1742 官方简体中文版

系统简介 Windows 11 LTSC&#xff08;长期服务通道&#xff09;是一个专为长期稳定性和可靠性设计的Windows 11变体&#xff0c;适合于需要最小更新和更改的关键任务系统和设备。与常规版本相比&#xff0c;LTSC版本的特点是更新频率较低&#xff0c;目的是为了保持系统的稳定…

从零开始掌握YOLOv11:揭秘三大损失函数的理想值(源码+实战)

相关文章&#xff1a; YOLOv1–v11: 版本演进及其关键技术解析-CSDN博客 YOLOv11&#xff1a;重新定义实时目标检测的未来-CSDN博客 Yolo v11目标检测实战1&#xff1a;对象分割和人流跟踪&#xff08;附源码&#xff09;-CSDN博客 YOLOv11目标检测实战2&#xff1a;人流统计…

win10下cuda12.1 +troch2.4.1+vs2022环境下编译安装flash-attn

步骤一 下载项目 先下载 https://github.com/Dao-AILab/flash-attention&#xff0c;然后在conda环境中进入项目目录 步骤二 安装依赖项 执行以下命令&#xff0c;安装cutlass库&#xff0c;该库为编译flash-attn的必须依赖 conda update --force conda conda install conda…

Linux文件重定向文件缓冲区

目录 一、C文件接口 二、系统文件I/O 2.1认识系统文件I/O 2.2系统文件I/O 2.3系统调用和库函数 2.4open( )的返回值--文件描述符 2.5访问文件的本质 三、文件重定向 3.1认识文件重定向 3.2文件重定向的本质 3.3在shell中添加重定向功能 3.4stdout和stderr 3.5如何理…

Java | Leetcode Java题解之第446题等差数列划分II-子序列

题目&#xff1a; 题解&#xff1a; class Solution {public int numberOfArithmeticSlices(int[] nums) {int ans 0;int n nums.length;Map<Long, Integer>[] f new Map[n];for (int i 0; i < n; i) {f[i] new HashMap<Long, Integer>();}for (int i 0;…

深度学习中的优化方法(Momentum,AdaGrad,RMSProp,Adam)详解及调用

深度学习中常用的优化方法包括啦momentum(动量法),Adagrad(adaptive gradient自适应梯度法),RMSProp(root mean square propagation均方根传播算法),Adam(adaptive moment estimation自适应矩估计法) 指数加权平均算法 所谓指数加权平均算法是上述优化算法的基础,其作用是对历…

定制化CRM如何重塑科技服务领域的生态链?

企业不仅面临着技术创新与知识产权保护的双重挑战&#xff0c;还需在激烈的市场竞争中构建稳固的客户关系与广泛的合作网络。传统的CRM&#xff08;客户关系管理&#xff09;系统&#xff0c;往往局限于企业内部的数据管理与流程优化&#xff0c;难以满足当前复杂多变的业务需求…

初识Linux · 进程替换

目录 前言&#xff1a; 1 直接看代码和现象 2 解释原理 3 将代码改成多进程版本 4 认识所有函数并使用 前言&#xff1a; 由前面的章节学习&#xff0c;我们已经了解了进程状态&#xff0c;进程终止以及进程等待&#xff0c;今天&#xff0c;我们学习进程替换。进程替换我…

【2023工业3D异常检测文献】Shape-Guided: 基于形状引导和双记忆库的异常检测方法

Shape-Guided Dual-Memory Learning for 3D Anomaly Detection 1、Background 提出了一个以形状为指导的专家学习框架&#xff0c;用于解决无监督3D异常检测的问题。 该方法建立在两个专门的专家模型及其协同作用的基础上&#xff0c;以从颜色和形状模态中定位异常区域。 第…

vue项目-仿知乎页面的路由跳转

这篇文章记录一下该项目的路由跳转&#xff0c;首先是登录页 登录页路由跳转到首页也就是index文件夹中 然后展示contentleft组件和contentright组件&#xff0c;他们在页面上的显示是这样的 然后每一个功能部分也会有另一个url&#xff0c;去跳转更详细的界面 有时间继续…

python-斐波那契词序列/最大回文乘积/求最大最小k个元素

一:斐波那契词序列题目描述 编写一个程序&#xff0c;生成斐波那契词序列的前n个元素。 斐波那契词序列是一个词序列&#xff0c;其中每个词是通过连接前两个词形成的。 它以斐波那契序列命名&#xff0c;因为它是以类似的方式创建的&#xff0c;但是我们不是加数字&#xff0c…

美国游戏玩家的文化偏好

美国游戏市场是世界上最大、最多样化的市场之一&#xff0c;受到一系列文化、社会和经济因素的影响。美国游戏玩家通常以参与技术和娱乐为特征&#xff0c;表现出由个人主义、竞争和社交互动驱动的偏好。主要趋势和偏好在这个市场中脱颖而出&#xff1a; 游戏类型多样 美国玩…