计算机毕业设计Python+Spark知识图谱酒店推荐系统 酒店价格预测系统 酒店可视化 酒店爬虫 酒店大数据 neo4j知识图谱 深度学习 机器学习

news2024/11/24 16:23:55

《Python+Spark知识图谱酒店推荐系统》开题报告

一、研究背景与意义

随着互联网技术的飞速发展和人们生活水平的提高,旅游和酒店行业迎来了前所未有的发展机遇。然而,面对海量的酒店信息和多样化的用户需求,如何快速、准确地为用户推荐符合其需求的酒店成为了一个亟待解决的问题。传统的酒店推荐系统大多基于规则或简单的统计方法,难以处理大规模的数据和复杂的用户行为。因此,开发一款基于Python和Spark的知识图谱酒店推荐系统,利用大数据和人工智能技术,对酒店数据进行深度挖掘和分析,为用户提供个性化的推荐服务,具有重要的研究意义和应用价值。

二、研究目标

本研究旨在开发一款高效、智能的酒店推荐系统,通过整合Python、Spark和知识图谱等先进技术,对酒店数据进行分布式处理和分析,结合用户行为数据和酒店信息,为用户提供个性化的酒店推荐服务,提升用户体验和酒店业的服务质量。具体目标包括:

  1. 构建用户画像:通过分析用户的历史行为数据、偏好等信息,构建用户画像,为推荐算法提供精准的用户特征。
  2. 酒店信息整合:收集并整合各类酒店信息,包括酒店位置、价格、设施、评价等,为推荐算法提供全面的酒店数据支持。
  3. 推荐算法研究:研究并应用先进的推荐算法,如协同过滤、深度学习等,结合知识图谱技术,提高推荐的准确性和个性化程度。
  4. 系统开发与实现:设计并实现酒店推荐系统的功能模块,包括用户管理、酒店信息管理、推荐算法模块等,确保系统的稳定性和易用性。

三、国内外研究现状

1. 国内研究现状

近年来,国内学者在酒店推荐系统方面进行了广泛的研究。传统的推荐方法主要包括基于协同过滤和基于内容的方法。然而,这些方法往往只考虑用户历史行为或物品属性,忽略了语义信息,且难以处理大规模数据。随着大数据和人工智能技术的发展,越来越多的研究者开始探索将深度学习、知识图谱等技术应用于酒店推荐系统中。例如,通过构建酒店和用户的知识图谱,可以更加全面地理解用户需求和酒店特点,提高推荐的准确性和个性化程度。

2. 国外研究现状

国外在酒店推荐系统方面的研究起步较早,已经取得了较为丰富的成果。研究者们不仅关注推荐算法的改进,还注重将推荐系统与其他技术相结合,如自然语言处理、情感分析等。同时,国外学者还关注推荐系统的实时性和可扩展性,以满足大规模数据和复杂用户行为的需求。

四、研究内容与方法

1. 研究内容

  1. 数据收集与预处理:编写爬虫程序,定期从旅游网站抓取酒店和用户行为数据,并进行数据清洗和预处理。
  2. 数据存储与管理:利用Hadoop的HDFS和Hive进行数据存储和管理,确保数据的安全性和可扩展性。
  3. 用户画像构建:研究用户画像的构建方法,包括数据收集、预处理、特征提取等步骤,确保用户画像的准确性和全面性。
  4. 酒店信息整合:研究酒店信息的获取和整合方法,包括网络爬虫、API接口等技术手段,确保酒店数据的全面性和实时性。
  5. 推荐算法研究:研究并应用先进的推荐算法,如基于内容的推荐、协同过滤推荐、深度学习推荐等,结合知识图谱技术进行优化。
  6. 系统开发与实现:设计并实现酒店推荐系统的功能模块,包括用户管理、酒店信息管理、推荐算法模块等,并进行系统测试和优化。

2. 研究方法

  1. 文献综述:通过查阅相关文献,了解酒店推荐系统的研究现状和发展趋势,为本研究提供理论支持。
  2. 实验验证:通过实验验证推荐算法的有效性和准确性,包括算法在不同数据集上的表现、推荐结果的准确性等指标。
  3. 系统开发:使用Python、Spark等技术进行系统的开发,结合Django等框架搭建系统后端,Vue等框架搭建前端界面,实现用户交互和推荐展示。

五、预期成果与创新点

1. 预期成果

  1. 开发一款高效、智能的酒店推荐系统,能够基于用户画像和酒店信息,为用户提供个性化的酒店推荐服务。
  2. 提出一种基于大数据和人工智能的推荐算法,结合知识图谱技术,提高推荐的准确性和个性化程度。
  3. 发表相关学术论文,将研究成果整理成学术论文,在相关学术期刊或会议上发表。

2. 创新点

  1. 融合知识图谱技术:将知识图谱技术应用于酒店推荐系统中,提高推荐的准确性和个性化程度。
  2. 基于Spark的分布式处理:利用Spark的分布式计算能力,提高系统的处理速度和效率,使其能够处理更多的数据和实现实时的推荐。
  3. 多种推荐算法融合:融合多种推荐算法,如协同过滤、深度学习等,结合用户画像和酒店信息,提供更加精准的推荐服务。

六、研究计划与进度安排

1. 第一阶段(XX月-XX月)

  • 进行文献综述和需求分析,明确研究目标和内容。
  • 搭建实验环境,准备开发工具和数据集。

2. 第二阶段(XX月-XX月)

  • 进行用户画像构建和酒店信息整合工作,为推荐算法提供数据支持。
  • 研究并应用推荐算法,进行实验验证和结果分析。

3. 第三阶段(XX月-XX月)

  • 设计并实现酒店推荐系统的功能模块,进行系统测试和优化。
  • 编写系统文档和用户手册,准备系统部署。

4. 第四阶段(XX月-XX月)

  • 撰写论文并准备答辩工作。
  • 对研究成果进行总结和反思,提出未来研究方向。

七、参考文献

(此处省略具体参考文献,实际撰写时应列出所有引用的文献)


以上即为《Python+Spark知识图谱酒店推荐系统》的开题报告,如有不足之处,请各位专家和老师指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2185838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Java】—— 集合框架:List接口常用方法与List接口的实现类

目录 4. Collection子接口1:List 4.1 List接口特点 4.2 List接口方法 4.3 List接口主要实现类:ArrayList 4.4 List的实现类之二:LinkedList 4.5 List的实现类之三:Vector 4.6 练习 4. Collection子接口1:List …

PCL 点云直通滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 直通滤波实现 2.1.2 可视化函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总(长期更新&#xf…

CS-BP预测 | MATLAB实现CS-BP布谷鸟搜索算法优化BP神经网络多变量时间序列预测

CS-BP预测 | MATLAB实现CS-BP布谷鸟搜索算法优化BP神经网络多变量时间序列预测 目录 CS-BP预测 | MATLAB实现CS-BP布谷鸟搜索算法优化BP神经网络多变量时间序列预测预测效果基本介绍程序设计参考资料预测效果 基本介绍 MATLAB实现CS-BP多变量时间序列预测(布谷鸟搜索算法优化B…

VMware中Ubuntu系统Docker正常运行但网络不通(已解决)

问题描述:在VMware中的Ubuntu系统下部署了Docker,当在docker容器中运行Eureka微服务时,发现Eureka启动正常,但无法通过网页访问该容器中Eureka。 解决办法如下: 1、创建桥接网络:test-net sudo docker n…

媲美GPT-4o mini的小模型,Meta Llama 3.2模型全面解读!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…

高性能架构—存储高性能

1 📊关系型数据库 存储技术飞速发展,关系型数据的ACID特性以及强大的SQL查询让其成为各种业务系统的关键和核心存储系统。 很多场景下的高性能设计最核心的就是关系型数据库的设计,很多数据库厂商再优化和提升单个数据库服务器的性能方面做了…

网络原理-数据链路层

在这一层中和程序员距离比较遥远,除非是做交换机开发,否则不需要了解数据链路层 由AI可知: 数据链路层(Data Link Layer)是OSI(Open Systems Interconnection)七层网络模型中的第二层&#xff0…

【Android 14源码分析】Activity启动流程-3

忽然有一天,我想要做一件事:去代码中去验证那些曾经被“灌输”的理论。                                                                                  – 服装…

后台管理系统脚手架

后台管理系统脚手架 介绍 在快速迭代的软件开发世界里,时间就是生产力,效率决定成败。对于构建复杂而庞大的后台系统而言,一个高效、可定制的后台脚手架(Backend Scaffold)无疑是开发者的得力助手。 脚手架 后台脚…

Python案例--这天第几天

如何使用Python计算一年中的第几天:详细指南 在处理日期和时间时,我们经常需要确定一个特定日期是一年中的第几天。这在许多应用场景中都非常有用,比如日历应用程序、数据分析和时间管理工具。Python,作为一种广泛使用的编程语言…

低功耗4G模组Air780E之串口通信篇

你对低功耗4G模组Air780E有多少了解? 今天我们来讲解低功耗4G模组Air780E的串口通信的基本用法,小伙伴们,学起来吧! 一、硬件准备 780E开发板一套,包括天线、USB数据线。 USB转TTL工具或线(例如ch340、…

用CSS创造三角形案例

6.3.2 用CSS创造三角形 用div来创建,角上是平分的,所以要是内部宽高为0,其他边透明,正好是三角形。 代码 div {border: 12px solid;width: 0;height: 0;border-color: transparent red transparent transparent; } 与伪元素aft…

基于SSM的校园社团管理系统的设计 社团信息管理 智慧社团管理社团预约系统 社团活动管理 社团人员管理 在线社团管理社团资源管理(源码+定制+文档)

博主介绍: ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台…

【rCore OS 开源操作系统】Rust 字符串(可变字符串String与字符串切片str)

【rCore OS 开源操作系统】Rust 语法详解: Strings 前言 这次涉及到的题目相对来说比较有深度,涉及到 Rust 新手们容易困惑的点。 这一次在直接开始做题之前,先来学习下字符串相关的知识。 Rust 的字符串 Rust中“字符串”这个概念涉及多种类型&…

Pikachu-xss实验案例-钓鱼

攻击思路:提供一个与攻击网站相似的登陆的钓鱼页面;让用户输入登陆信息 查看项目源代码,首先访问 fish.php ,提供输入的登陆框, 从登陆框获取到账号、密码后,重定向到xfish.php 做保存; 因此,需…

遥感图像变换检测实践上手(TensorRT+UNet)

目录 简介 分析PyTorch示例 onnx模型转engine 编写TensorRT推理代码 main.cpp测试代码 小结 简介 这里通过TensorRTUNet,在Linux下实现对遥感图像的变化检测,示例如下: 可以先拉去代码:RemoteChangeDetection 分析PyTorch示…

C++基类构造器的自动调用

C基类构造器的自动调用 虽然基类的构造器和解构器不会被派生类继承,但它们会被派生类的构造器和解构器自动调用,今天我们用代码实证一下。 验证代码 源代码,仔细看注释内容: D:\YcjWork\CppTour>vim c2004.cpp #include &l…

特征工程与选择:优化模型性能的关键步骤----示例:特征工程在泰坦尼克号生存预测中的应用、使用递归特征消除(RFE)进行特征选择

特征工程和特征选择是机器学习流程中至关重要的环节,直接影响到模型的性能。特征工程涉及从原始数据中提取或构造有用的特征,而特征选择则是从已有的特征集中挑选出最相关的子集。 特征工程 特征工程是指创建能够使机器学习算法更好地理解数据的新特征的…

平面电磁波(解麦克斯韦方程)

注意无源代表你立方程那个点xyzt处没有源,电场磁场也是这个点的。 j电流面密度,电流除以单位面积,ρ电荷体密度,电荷除以单位体积。 j方程组有16个未知数,每个矢量有三个xyz分量,即三个未知数,…

样式重置 normalize.css

安装normalize.css npm install --save normalize.csspnpm add normalize.css安装less yarn add less -Dmain.ts import { createApp } from vue import App from ./App.vue // 引入 import normalize.csscreateApp(App).mount(#app)index.less import less中的语法 imp…