加油站智能视频监控预警系统(AI识别烟火打电话抽烟) Python 和 OpenCV 库

news2024/11/6 9:27:51

加油站作为存储和销售易燃易爆油品的场所,是重大危险源之一,随着科技的不断发展,智能视频监控预警系统在加油站的安全保障方面发挥着日益关键的作用,尤其是其中基于AI的烟火识别、抽烟识别和打电话识别功能,以及其独特的系统组网方式。

加油站重大危险源监测

(一)油品的易燃易爆性

加油站储存着大量汽油、柴油等油品,这些油品具有低闪点、易挥发的特性。一旦发生泄漏并遇到火源,就可能引发剧烈的爆炸和火灾,对周边环境、人员生命财产造成难以估量的损失。

(二)人员活动带来的风险

加油站内人员流动频繁,包括加油的顾客、工作人员等。顾客可能存在违规抽烟、打电话等危险行为,工作人员操作不当也可能引发安全事故。例如,打电话时可能产生的电火花、抽烟时的明火等,在油气浓度较高的环境下,瞬间就可能引发灾难。

(三)环境因素的影响

加油站周围的环境状况也可能影响其安全。如雷电天气可能引发雷击,周边的火灾隐患若蔓延到加油站,后果不堪设想。因此,对加油站进行全面的重大危险源监测是确保安全运营的必要前提。

加油站AI烟火识别、抽烟识别、打电话识别的功能与意义

(一)AI烟火识别

功能

基于先进的人工智能算法,智能视频监控预警系统能够精准地识别监控画面中的烟火。无论是在加油区、油罐区还是周边区域,一旦有烟火出现,系统能迅速作出反应。

意义

及时发现火灾隐患,相较于传统的人工巡检方式,AI烟火识别可以做到24小时不间断监控,大大提高了火灾预警的及时性。这对于在火灾初期进行扑救,减少损失具有不可替代的作用。

(二)抽烟识别

功能

通过对监控画面中人物的行为动作和物体特征进行分析,系统能够准确判断是否有人员在抽烟。它可以识别香烟的形状、烟雾等特征,即使在复杂的环境背景下也能准确判断。

意义

抽烟是加油站内严禁的危险行为。抽烟识别功能有效地阻止了因抽烟引发火灾的风险,保障了加油站内的安全环境,同时也对提高公众的安全意识起到了监督和教育的作用。

(三)打电话识别

功能

利用AI技术对人物手持物体和动作姿态进行分析,识别出是否有人在打电话。系统能够区分正常的手部动作和打电话的特定动作。

意义

打电话产生的电磁信号在加油站可能引发危险,这种识别功能可以避免因顾客或工作人员违规打电话而带来的安全隐患,从而确保加油站的安全运营。

以下是一个简单的使用 Python 和 OpenCV 库实现基于深度学习的图像识别(可以用于类似加油站场景下识别抽烟、打电话等行为的简单示例)的代码框架,这里以识别物体为例:

import cv2
import numpy as np

# 加载预训练的深度学习模型(这里以MobileNet SSD为例)
net = cv2.dnn.readNetFromCaffe('MobileNetSSD_deploy.prototxt.txt','MobileNetSSD_deploy.caffemodel')

# 类别标签
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
           "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
           "sofa", "train", "tvmonitor"]


def detect_objects(image):
    (h, w) = image.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)

    net.setInput(blob)
    detections = net.forward()

    for i in np.arange(0, detections.shape[2]):
        confidence = detections[0, 0, i, 2]

        if confidence > 0.2:
            idx = int(detections[0, 0, i, 1])
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
            cv2.rectangle(image, (startX, startY), (endX, endY),
                          (0, 255, 0), 2)
            y = startY - 15 if startY - 15 > 15 else startY + 15
            cv2.putText(image, label, (startX, y),
                        cv2.fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale=0.5, color=(0, 255, 0), thickness=1)
    return image


# 读取图像
image = cv2.imread('test.jpg')
result = detect_objects(image)
cv2.imshow('Object Detection', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

加油站智能视频监控预警系统组网

(一)前端监控设备

摄像头布局

在加油站的关键区域,如加油岛、油罐区、便利店门口等,合理布局高清摄像头。这些摄像头需要具备高分辨率、低照度、宽动态范围等特性,以适应不同的环境光线条件,确保能够清晰地捕捉到监控画面。

传感器配置

除了摄像头,还可以配备一些辅助的传感器,如温度传感器、烟雾传感器等。这些传感器可以与摄像头协同工作,当传感器检测到异常情况时,摄像头能够迅速对准相应区域进行重点监控。

(二)数据传输网络

有线网络

采用光纤等有线网络传输方式,保证数据传输的稳定性和高速性。有线网络能够抵抗外界干扰,确保监控视频和识别数据能够准确无误地传输到后端处理中心。

无线网络

对于一些不方便布线的区域,可以采用无线网络传输,如5G网络。无线网络具有灵活性高的特点,但需要注意信号的稳定性和安全性。

(三)后端处理中心

数据处理服务器

后端处理中心配备高性能的数据处理服务器,用于对前端传来的视频数据和传感器数据进行分析处理。服务器上运行着先进的AI识别算法软件,能够快速准确地对烟火、抽烟、打电话等行为进行识别。

预警系统

当识别到危险行为或异常情况时,预警系统会立即启动。预警方式可以包括声音报警、短信通知管理人员、在监控中心的屏幕上弹出报警画面等,以便管理人员能够及时采取措施进行处理。

加油站智能视频监控预警系统中的AI识别烟火、抽烟、打电话功能以及其合理的系统组网,为加油站的安全管理提供了全方位、多层次的保障。它不仅提高了安全管理的效率,降低了人工巡检的成本和误差,更重要的是,能够有效地预防安全事故的发生。随着技术的不断发展,未来加油站智能视频监控预警系统还将不断完善,进一步提升加油站的安全水平,确保加油站能够在安全的环境下为社会提供能源服务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2181776.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++入门基础知识93(实例)——实例18【猴子吃桃问题】

成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于猴子吃桃问题的相关内容! 关…

微信小程序处理交易投诉管理,支持多小程序

大家好,我是小悟 1、问题背景 玩过微信小程序生态的,或许就有这种感受,如果收到投诉单,不会及时通知到手机端,而是每天早上10:00向小程序的管理员及运营者推送通知。通知内容为截至前一天24时该小程序账号内待处理的交…

家用无线路由器配置

一.首先进行线路连接。如下图:"光猫LAN口"—网线—"路由器WAN口"。 注意:家用光纤宽带一般选择使用200兆宽带到1000兆,如果网速不达标请查看路由器是否是千兆路由器。千兆路由器通常是双频的,支持两个信号一个…

Ubuntu 20.04常见配置(含yum源替换、桌面安装、防火墙设置、ntp配置)

Ubuntu 20.04常见配置 1. yum源配置2. 安装桌面及图形化2.1 安装图形化桌面2.1.1 选择安装gnome桌面2.1.2 选择安装xface桌面 2.2 安装VNC-Server 3. ufw防火墙策略4. 时区设置及NTP时间同步4.1 时区设置4.2 NTP安装及时间同步4.2.1 服务端(例:172.16.32…

03-指针的类型,算术运算,void指针

指针是强类型的,需要特定类型的指针来存放特定类型变量的地址. 指针作用: 储存内存地址; 解引用那些地址的内容(访问和修改地址中的值) 一、整形,字符型指针输出: #include <stdio.h>int main(int argc, const char* argv[]) {int a 1025;int* p;p &a;printf(&qu…

【Linux:线程概念】

目录 概念&#xff1a; 创建线程的函数&#xff1a;​编辑 ​编辑 有多进程为什么还需要有多线程&#xff1f; 线程调度的成本为什么低&#xff1f; 进程与线程的区别&#xff1a; 概念&#xff1a; 线程是CPU的基本调度单位&#xff0c;在进程内部运行。在内核中&#xff…

Google AlphaChip改变了计算机芯片设计

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

\?拉普拉斯到底在讲什么\?控制理论\?倒立摆/

在大学课程中&#xff0c;无疑控制理论难倒了一大堆同学&#xff0c;那么接下来&#xff0c;从实践中来分析这个控制理论。 首先上场的就是拉普拉斯变化。上篇文章说了一下傅里叶函数的作用和使用&#xff0c;简单回顾一下&#xff1a; 傅里叶变换就是将一个周期或非周期的信号…

【有啥问啥】卡尔曼滤波(Kalman Filter):从噪声中提取信号的利器

卡尔曼滤波&#xff08;Kalman Filter&#xff09;&#xff1a;从噪声中提取信号的利器 什么是卡尔曼滤波&#xff1f; 卡尔曼滤波&#xff08;Kalman Filter&#xff09;是一种高效的递归滤波器&#xff0c;专为处理包含噪声的线性动态系统而设计。它能够从一系列不完全且含…

淘宝商品评论接口技术详解及代码示例

引言 淘宝商品评论接口是电商数据分析中不可或缺的一部分&#xff0c;它可以帮助商家和消费者更好地了解商品的质量、用户满意度等信息。本文将详细介绍如何使用淘宝商品评论接口&#xff0c;并提供相应的代码示例。 淘宝商品评论接口概述 淘宝商品评论接口主要用于获取商品…

ndb9300public-ndb2excel简介

1 引言 ndb9300是一个自己定义的机载导航数据库劳作&#xff08;不敢称为项目&#xff09;代号&#xff0c;其中3表示是第3种数据库。 多年前&#xff0c;对在役民航客机中的某型机载导航数据库的二进制文件进行分析&#xff0c;弄明白它的数据结构后做了几个工具&#xff0c…

elasticsearch设置账号和密码

1、es安装&#xff0c;挂载路径根据实际情况修改 docker run -d --restart always \ --name es \ -e "ES_JAVA_OPTS-Xms512m -Xmx512m" \ -e "discovery.typesingle-node" \ -e "TZAsia/Shanghai" \ -v /mnt/data/efk/es/data:/usr/share/elast…

Autoware 定位之数据稳定处理(十)

0. 简介 这一讲按照《Autoware 技术代码解读&#xff08;三&#xff09;》梳理的顺序&#xff0c;我们来说一说Autoware中的数据稳定处理操作&#xff0c;这一讲的内容比较多&#xff0c;主要分为&#xff1a; pose_instability_detector 节点&#xff0c;旨在监测 /localiza…

无人机协同作业中的多网融合技术详解

无人机协同作业中的多网融合技术是一种复杂且高效的技术体系&#xff0c;它旨在通过整合多种通信网络和技术&#xff0c;实现多架无人机之间的无缝协同作业&#xff0c;从而提升任务执行效率、增强系统可靠性和扩展应用场景。以下是对该技术的详细解析&#xff1a; 一、多网融…

Leetcode 11.乘最多水的容器(字节,快手面试题)

题目链接&#xff1a;11. 盛最多水的容器 - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。找出其中的两条线&#xff0c;使得它们与 x 轴共同…

python-ds:Python 中的数据结构库(适用于面试的数据结构和算法合集)

在软件开发中&#xff0c;数据结构是组织和存储数据的方式&#xff0c;对算法的效率和程序的性能至关重要。Python 提供了许多内置的数据结构&#xff0c;但在一些复杂的应用场景中&#xff0c;原生数据结构可能无法满足特定需求。这时&#xff0c;一个功能强大、易于使用的数据…

STM32 实现 UDP 广播通信

目录 一、引言 二、准备工作 1.硬件准备 2.软件准备 三、LWIP 协议栈的配置与初始化 1.添加 LWIP 源文件 2.配置 LWIP 3.初始化 LWIP 四.创建 UDP 广播套接字 1.创建 UDP 控制块 2.绑定本地端口 五、设置 UDP 广播选项 1.设置广播地址 2.设置广播选项 六、发…

白内障分类数据集 3.4G

用于白内障检测的白内障和正常眼睛图像分类数据集。 名称 白内障分类数据集 规模 数据量&#xff1a;3.4GB图像数量&#xff1a;未明确提供&#xff0c;但通常这类数据集包含数千张图像。 类别 正常眼&#xff1a;无白内障的眼睛早期白内障&#xff1a;轻度白内障的眼睛中…

IDEA在git提交时添加忽略文件

在IntelliJ IDEA中&#xff0c;要忽略target目录下所有文件的Git提交&#xff0c;你可以通过设置.gitignore文件来实现。以下是步骤和示例代码&#xff1a; 1、打开项目根目录下的.gitignore文件。也可以先下载这个.ignore插件。 2、如果不存在&#xff0c;利用上面的插件新建…

Docker笔记-Docker磁盘空间清理

无用的容器指的是已经停止运行且处于非活跃状态的容器。无用的镜像包括没有被任何容器使用的镜像&#xff0c;或者是被标记为"<none>"的镜像&#xff0c;通常是构建过程中产生的无标签镜像。 通过执行 docker container ls -a 和 docker image ls -a 命令&…