AtCoder Beginner Contest 373(ABCDEF 题)视频讲解

news2024/11/6 3:00:54

A - September

Problem Statement

There are 12 12 12 strings S 1 , S 2 , … , S 12 S_1, S_2, \ldots, S_{12} S1,S2,,S12 consisting of lowercase English letters.
Find how many integers i i i ( 1 ≤ i ≤ 12 ) (1 \leq i \leq 12) (1i12) satisfy that the length of S i S_i Si is i i i.

Constraints

Each S i S_i Si is a string of length between 1 1 1 and 100 100 100, inclusive, consisting of lowercase English letters. ( 1 ≤ i ≤ 12 ) (1 \leq i \leq 12) (1i12)

Input

The input is given from Standard Input in the following format:

S 1 S_1 S1
S 2 S_2 S2
⋮ \vdots
S 12 S_{12} S12

Output

Print the number of integers i i i ( 1 ≤ i ≤ 12 ) (1 \leq i \leq 12) (1i12) such that the length of S i S_i Si is i i i.

Sample Input 1
january
february
march
april
may
june
july
august
september
october
november
december
Sample Output 1
1

There is only one integer i i i such that the length of S i S_i Si is i i i: 9 9 9. Thus, print 1.

Sample Input 2
ve
inrtfa
npccxva
djiq
lmbkktngaovl
mlfiv
fmbvcmuxuwggfq
qgmtwxmb
jii
ts
bfxrvs
eqvy
Sample Output 2
2

There are two integers i i i such that the length of S i S_i Si is i i i: 4 4 4 and 8 8 8. Thus, print 2.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second

using namespace std;

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

	int res = 0;
	for (int i = 1; i <= 12; i ++) {
		string s;
		cin >> s;
		if (s.size() == i) res ++;
	}
	
	cout << res << endl;

	return 0;
}

B - 1D Keyboard

Problem Statement

There is a keyboard with 26 26 26 keys arranged on a number line.
The arrangement of this keyboard is represented by a string S S S, which is a permutation of ABCDEFGHIJKLMNOPQRSTUVWXYZ.
The key corresponding to the character S x S_x Sx is located at coordinate x x x ( 1 ≤ x ≤ 26 ) (1 \leq x \leq 26) (1x26). Here, S x S_x Sx denotes the x x x-th character of S S S.
You will use this keyboard to input ABCDEFGHIJKLMNOPQRSTUVWXYZ in this order, typing each letter exactly once with your right index finger.
To input a character, you need to move your finger to the coordinate of the key corresponding to that character and press the key.
Initially, your finger is at the coordinate of the key corresponding to A. Find the minimal possible total traveled distance of your finger from pressing the key for A to pressing the key for Z. Here, pressing a key does not contribute to the distance.

Constraints

S S S is a permutation of ABCDEFGHIJKLMNOPQRSTUVWXYZ.

Input

The input is given from Standard Input in the following format:

S S S

Output

Print the answer.

Sample Input 1
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Sample Output 1
25

From pressing the key for A to pressing the key for Z, you need to move your finger 1 1 1 unit at a time in the positive direction, resulting in a total traveled distance of 25 25 25. It is impossible to press all keys with a total traveled distance less than 25 25 25, so print 25.

Sample Input 2
MGJYIZDKSBHPVENFLQURTCWOAX
Sample Output 2
223

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second

using namespace std;

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

	int res = 0;
	unordered_map<char, int> idx;
	for (int i = 1; i <= 26; i ++) {
		char x;
		cin >> x, idx[x] = i;
	}
	for (char i = 'A' + 1; i <= 'Z'; i ++)
		res += abs(idx[i] - idx[i - 1]);
	
	cout << res << endl;

	return 0;
}

C - Max Ai+Bj

Problem Statement

You are given two integer sequences A A A and B B B, each of length N N N. Choose integers i , j i, j i,j ( 1 ≤ i , j ≤ N ) (1 \leq i, j \leq N) (1i,jN) to maximize the value of A i + B j A_i + B_j Ai+Bj.

Constraints

1 ≤ N ≤ 5 × 1 0 5 1 \leq N \leq 5 \times 10^5 1N5×105
∣ A i ∣ ≤ 1 0 9 |A_i| \leq 10^9 Ai109 ( i = 1 , 2 , … , N ) (i=1,2,\dots,N) (i=1,2,,N)
∣ B j ∣ ≤ 1 0 9 |B_j| \leq 10^9 Bj109 ( j = 1 , 2 , … , N ) (j=1,2,\dots,N) (j=1,2,,N)
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1 A 2 A_2 A2 … \dots A N A_N AN
B 1 B_1 B1 B 2 B_2 B2 … \dots B N B_N BN

Output

Print the maximum possible value of A i + B j A_i + B_j Ai+Bj.

Sample Input 1
2
-1 5
3 -7
Sample Output 1
8

For ( i , j ) = ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 2 ) (i,j) = (1,1), (1,2), (2,1), (2,2) (i,j)=(1,1),(1,2),(2,1),(2,2), the values of A i + B j A_i + B_j Ai+Bj are 2 , − 8 , 8 , − 2 2, -8, 8, -2 2,8,8,2 respectively, and ( i , j ) = ( 2 , 1 ) (i,j) = (2,1) (i,j)=(2,1) achieves the maximum value 8 8 8.

Sample Input 2
6
15 12 3 -13 -1 -19
7 17 -13 -10 18 4
Sample Output 2
33

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second

using namespace std;

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

	int n;
	cin >> n;
	
	int A = -1e18, B = -1e18;
	for (int i = 1, x; i <= n; i ++) cin >> x, A = max(A, x);
	for (int i = 1, x; i <= n; i ++) cin >> x, B = max(B, x);
	
	cout << A + B << endl;

	return 0;
}

D - Hidden Weights

Problem Statement

You are given a directed graph with N N N vertices and M M M edges. The j j j-th directed edge goes from vertex u j u_j uj to vertex v j v_j vj and has a weight of w j w_j wj.
Find one way to write an integer between − 1 0 18 -10^{18} 1018 and 1 0 18 10^{18} 1018, inclusive, to each vertex such that the following condition is satisfied.
Let x i x_i xi be the value written on vertex i i i. For all edges j = 1 , 2 , … , M j=1,2,\dots,M j=1,2,,M, it holds that x v j − x u j = w j x_{v_j} - x_{u_j} = w_j xvjxuj=wj.
It is guaranteed that at least one such assignment exists for the given input.

Constraints

2 ≤ N ≤ 2 × 1 0 5 2 \leq N \leq 2 \times 10^5 2N2×105
1 ≤ M ≤ min ⁡ { 2 × 1 0 5 , N ( N − 1 ) / 2 } 1 \leq M \leq \min\{2 \times 10^5,N(N-1)/2\} 1Mmin{2×105,N(N1)/2}
1 ≤ u j , v j ≤ N 1 \leq u_j, v_j \leq N 1uj,vjN
u j ≠ v j u_j \neq v_j uj=vj
If i ≠ j i \neq j i=j, then ( u i , v i ) ≠ ( u j , v j ) (u_i, v_i) \neq (u_j, v_j) (ui,vi)=(uj,vj) and ( u i , v i ) ≠ ( v j , u j ) (u_i, v_i) \neq (v_j, u_j) (ui,vi)=(vj,uj)
∣ w j ∣ ≤ 1 0 9 |w_j| \leq 10^9 wj109
All input values are integers.
There exists at least one assignment satisfying the conditions.

Input

The input is given from Standard Input in the following format:

N N N M M M
u 1 u_1 u1 v 1 v_1 v1 w 1 w_1 w1
u 2 u_2 u2 v 2 v_2 v2 w 2 w_2 w2
⋮ \vdots
u M u_M uM v M v_M vM w M w_M wM

Output

Let x i x_i xi be the integer written on vertex i i i. Print x 1 , x 2 , … , x N x_1, x_2, \dots, x_N x1,x2,,xN in this order, separated by spaces, on a single line. If there are multiple solutions, you may print any of them.

Sample Input 1
3 3
1 2 2
3 2 3
1 3 -1
Sample Output 1
3 5 2

By setting x = ( 3 , 5 , 2 ) x = (3, 5, 2) x=(3,5,2), we have x 2 − x 1 = w 1 = 2 x_2 - x_1 = w_1 = 2 x2x1=w1=2, x 2 − x 3 = w 2 = 3 x_2 - x_3 = w_2 = 3 x2x3=w2=3, x 3 − x 1 = w 3 = − 1 x_3 - x_1 = w_3 = -1 x3x1=w3=1, satisfying the conditions.
For example, x = ( − 1 , 1 , − 2 ) x = (-1, 1, -2) x=(1,1,2) is also a valid answer.

Sample Input 2
4 2
2 1 5
3 4 -3
Sample Output 2
5 0 6 3

For example, x = ( 0 , − 5 , 4 , 1 ) x = (0, -5, 4, 1) x=(0,5,4,1) and x = ( 5 , 0 , 4 , 1 ) x = (5, 0, 4, 1) x=(5,0,4,1) are also valid answers.

Sample Input 3
5 7
2 1 18169343
3 1 307110901
4 1 130955934
2 3 -288941558
2 5 96267410
5 3 -385208968
4 3 -176154967
Sample Output 3
200401298 182231955 -106709603 69445364 278499365

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second

using namespace std;

const int N = 2e5 + 10, inf = 0x3f3f3f3f3f3f3f3f;

int n, m;
int h[N], e[N << 1], ne[N << 1], w[N << 1], idx;
int res[N];

void add(int a, int b, int c) {
	e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}
void dfs(int u) {
	for (int i = h[u]; ~i; i = ne[i]) {
		int v = e[i];
		if (res[v] != inf) continue;
		res[v] = res[u] + w[i], dfs(v);
	}
}

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

	memset(h, -1, sizeof h);
	
	cin >> n >> m;
	while (m -- ) {
		int u, v, c;
		cin >> u >> v >> c;
		add(u, v, c), add(v, u, -c);
	}
	
	memset(res, 0x3f, sizeof res);
	for (int i = 1; i <= n; i ++)
		if (res[i] == inf) {
			res[i] = 0;
			dfs(i);
		}
		
	for (int i = 1; i <= n; i ++)
		cout << res[i] << " ";
	cout << endl;

	return 0;
}


E - How to Win the Election

Problem Statement

An election is being held with N N N candidates numbered 1 , 2 , … , N 1, 2, \ldots, N 1,2,,N. There are K K K votes, some of which have been counted so far.
Up until now, candidate i i i has received A i A_i Ai votes.
After all ballots are counted, candidate i i i ( 1 ≤ i ≤ N ) (1 \leq i \leq N) (1iN) will be elected if and only if the number of candidates who have received more votes than them is less than M M M. There may be multiple candidates elected.
For each candidate, find the minimum number of additional votes they need from the remaining ballots to guarantee their victory regardless of how the other candidates receive votes.
Formally, solve the following problem for each i = 1 , 2 , … , N i = 1,2,\ldots,N i=1,2,,N.
Determine if there is a non-negative integer X X X not exceeding K − ∑ i = 1 N A i K - \displaystyle{\sum_{i=1}^{N}} A_i Ki=1NAi satisfying the following condition. If it exists, find the minimum possible such integer.
If candidate i i i receives X X X additional votes, then candidate i i i will always be elected.

Constraints

1 ≤ M ≤ N ≤ 2 × 1 0 5 1 \leq M \leq N \leq 2 \times 10^5 1MN2×105
1 ≤ K ≤ 1 0 12 1 \leq K \leq 10^{12} 1K1012
0 ≤ A i ≤ 1 0 12 0 \leq A_i \leq 10^{12} 0Ai1012
∑ i = 1 N A i ≤ K \displaystyle{\sum_{i=1}^{N} A_i} \leq K i=1NAiK
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M K K K
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Let C i C_i Ci be the minimum number of additional votes candidate i i i needs from the remaining ballots to guarantee their victory regardless of how other candidates receive votes. Print C 1 , C 2 , … , C N C_1, C_2, \ldots, C_N C1,C2,,CN separated by spaces.
If candidate i i i has already secured their victory, then let C i = 0 C_i = 0 Ci=0. If candidate i i i cannot secure their victory under any circumstances, then let C i = − 1 C_i = -1 Ci=1.

Sample Input 1
5 2 16
3 1 4 1 5
Sample Output 1
2 -1 1 -1 0

14 14 14 votes have been counted so far, and 2 2 2 votes are left.

The C C C to output is ( 2 , − 1 , 1 , − 1 , 0 ) (2, -1, 1, -1, 0) (2,1,1,1,0). For example:
Candidate 1 1 1 can secure their victory by obtaining 2 2 2 more votes, while not by obtaining 1 1 1 more vote. Thus, C 1 = 2 C_1 = 2 C1=2.
Candidate 2 2 2 can never (even if they obtain 2 2 2 more votes) secure their victory, so C 2 = − 1 C_2 = -1 C2=1.

Sample Input 2
12 1 570
81 62 17 5 5 86 15 7 79 26 6 28
Sample Output 2
79 89 111 117 117 74 112 116 80 107 117 106

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second

using namespace std;

const int N = 2e5 + 10;

int n, m, k;
int a[N], b[N], c[N];

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

	cin >> n >> m >> k;
	int sum = 0;
	for (int i = 1; i <= n; i ++)
		cin >> a[i], b[i] = a[i], sum += a[i];
	if (n == 1) {
		cout << 0 << endl;
		return 0;
	}
	if (n == m) {
		for (int i = 1; i <= n; i ++)
			cout << 0 << " ";
		cout << endl;
		return 0;
	}
	sort(b + 1, b + 1 + n);
	for (int i = 1; i <= n; i ++)
		c[i] = c[i - 1] + b[i];
	
	for (int i = 1; i <= n; i ++) {
		auto check = [&](int x) -> bool {
			int now = a[i] + x, rest = k - x - sum, pos = upper_bound(b + 1, b + 1 + n, now) - b - 1;
			if (a[i] < b[n - m + 1]) {
				if (pos < n - m + 1) return 0;
				return (pos - n + m) * (now + 1) - c[pos] + c[n - m] > rest;
			} else {
				if (pos < n - m) return 0;
				// if (a[i] > b[pos]) return (pos - n + m + 1) * (now + 1) - c[pos] + c[max(0ll, n - m - 1)] > rest;
				return (pos - n + m) * (now + 1) - c[pos] + c[max(0ll, n - m - 1)] + a[i] > rest;
			}
		};
		int lo = 0, ro = k - sum, res = -1;
		while (lo <= ro) {
			int mid = lo + ro >> 1;
			if (check(mid)) ro = mid - 1, res = mid;
			else lo = mid + 1;
		}
		cout << res << " ";
	}
	cout << endl;

	return 0;
}


F - Knapsack with Diminishing Values

Problem Statement

There are N N N types of items. The i i i-th type of item has a weight of w i w_i wi and a value of v i v_i vi. Each type has 1 0 10 10^{10} 1010 items available.
Takahashi is going to choose some items and put them into a bag with capacity W W W. He wants to maximize the value of the selected items while avoiding choosing too many items of the same type. Hence, he defines the happiness of choosing k i k_i ki items of type i i i as k i v i − k i 2 k_i v_i - k_i^2 kiviki2. He wants to choose items to maximize the total happiness over all types while keeping the total weight at most W W W. Calculate the maximum total happiness he can achieve.

Constraints

1 ≤ N ≤ 3000 1 \leq N \leq 3000 1N3000
1 ≤ W ≤ 3000 1 \leq W \leq 3000 1W3000
1 ≤ w i ≤ W 1 \leq w_i \leq W 1wiW
1 ≤ v i ≤ 1 0 9 1 \leq v_i \leq 10^9 1vi109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N W W W
w 1 w_1 w1 v 1 v_1 v1
w 2 w_2 w2 v 2 v_2 v2
⋮ \vdots
w N w_N wN v N v_N vN

Output

Print the answer.

Sample Input 1
2 10
3 4
3 2
Sample Output 1
5

By choosing 2 2 2 items of type 1 1 1 and 1 1 1 item of type 2 2 2, the total happiness can be 5 5 5, which is optimal.
Here, the happiness for type 1 1 1 is 2 × 4 − 2 2 = 4 2 \times 4 - 2^2 = 4 2×422=4, and the happiness for type 2 2 2 is 1 × 2 − 1 2 = 1 1 \times 2 - 1^2 = 1 1×212=1.
The total weight is 9 9 9, which is within the capacity 10 10 10.

Sample Input 2
3 6
1 4
2 3
2 7
Sample Output 2
14
Sample Input 3
1 10
1 7
Sample Output 3
12

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long long
#define fi first
#define se second

using namespace std;

const int N = 3e3 + 10;

int n, m;
priority_queue<int> heap[N];
int dp[N];

signed main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);

	cin >> n >> m;
	for (int i = 1; i <= n; i ++) {
		int w, v;
		cin >> w >> v, heap[w].push(v - 1);
	}
	
	for (int i = 1; i <= m; i ++)
		for (int j = 1; j <= m / i && heap[i].size(); j ++) {
			int v = heap[i].top();
			heap[i].pop();
			for (int k = m; k >= i; k --) dp[k] = max(dp[k], dp[k - i] + v);
			heap[i].push(v - 2);
		}
	
	cout << *max_element(dp + 1, dp + 1 + m) << endl;

	return 0;
}


视频题解

AtCoder Beginner Contest 373(A ~ F 题讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2181315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【line features】线特征(2)

【line features】线特征&#xff08;2&#xff09; 1. line features实现原理1. **初始化与参数设置**&#xff1a;2. **图像读取**&#xff1a;3. **线特征检测**&#xff1a;4. **线特征描述子计算**&#xff1a;5. **特征匹配**&#xff1a;6. **匹配结果可视化**&#xff…

递归算法介绍和【题解】——数楼梯

递归算法介绍和【题解】——数楼梯 1.递推算法介绍2.数楼梯题目描述输入格式输出格式输入输出样例输入 #1输出 #1 提示 1.思路解析2.AC代码 1.递推算法介绍 有些目标是宏大的&#xff0c;比如如果你想找到一个好工作&#xff0c;需要先把面试通过。要把面试通过&#xff0c;就需…

c++11~c++20 结构化绑定

结构化帮绑定可以作用于3中类型 一、原生数组类型 结果&#xff1a; 备注&#xff1a;绑定到原生数组所需条件仅仅是要求别名的数量于数组元素的个数一致&#xff0c;这里的x&#xff0c;y&#xff0c;z分别绑定到a[0],a[1],a[2] 二、绑定到结构体和类对象 结果&#xff1a;…

C99中的变长数组

在C99标准之前&#xff0c;从语言在创建数组的时候&#xff0c;指定数组的大小只能使用常量和表达式&#xff0c;或者数据初始化的时候&#xff0c;可以省略数组大小。 1.int arr[5]{1,2,3,4,4}; 2.int arr[24]{1,2,3,4,5,6}; 3.int arr[]{1,2,3,3,4,5,6}; 这样的语法限制不够灵…

新疆阿克苏地区新和县召开2024年重大项目高质量发展推进会

五一水库及生态修复产业融合发展等14个项目动工兴建 9月29日&#xff0c;新疆阿克苏地区新和县举行2024年重大项目高质量发展推进会上&#xff0c;五一水库生态修复暨产业融合发展重点项目等14个项目正式动工兴建。 据了解&#xff0c;此次开工的14个项目&#xff0c;总投资17…

LPDDR4芯片学习(二)——Functional Description

一、LPDDR4寻址表 以每个die容量为4GB为例&#xff1a; Memory density(per channel) 2Gb&#xff1a;每个通道大小为2Gb&#xff0c;一个die有两个通道Configuration 16Mb 16DQ 8 banks 2 channels &#xff1a;16Mb的寻址空间16位每个channels8个bank*每个die两channels。1…

电影《749局》酷燃首映 苗苗神秘感大片释出氛围感拉满

2024 年 9 月 30 日&#xff0c;电影《749 局》在北京举办首映礼&#xff0c;导演陆川携主创王俊凯、苗苗、郑恺、任敏、李晨、杨皓宇出席&#xff0c;演员苗苗在片中饰演 749 局成员夏婳&#xff0c;这个角色天赋异禀&#xff0c;拥有特殊异能&#xff0c;为影片增添一抹神秘色…

从异步传染浅谈代数效应

如果你经常使用并且关注React&#xff0c;你一定会在不少地方见过"代数效应"&#xff08;algebra effect) 这个抽象概念。可能是翻译和过度学术的缘故&#xff0c;我看了很多文章才大致理解&#xff0c;在这里简单记录一下。 try/catch & try/handle 你一定使用…

通信工程学习:什么是CSMA/CD载波监听多路访问/冲突检测

CSMA/CD&#xff1a;载波监听多路访问/冲突检测 CSMA/CD&#xff08;Carrier Sense Multiple Access/Collision Detect&#xff09;&#xff0c;即载波监听多路访问/冲突检测&#xff0c;是一种用于数据通信的介质访问控制协议&#xff0c;广泛应用于局域网&#xff08;特别是以…

SQL增删查改操作

目录 数据库概述 SQL基础操作 SQL通用语法 数据类型 SQL语句的分类 DDL(数据库定义,表定义,字段定义) 数据库操作 表操作 DDL小结 DML(数据的增删改,数据操作语言) DQL(查询) DQL小节 数据库概述 数据库,顾名思义就是用来存储和管理数据的,我们平时所使用的各大软…

养老院管理系统(含源码+sql+视频导入教程+文档)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1 、功能描述 养老院管理系统拥有两种角色&#xff1a;管理员和护工 管理员&#xff1a;用户管理、老人信息管理、事故记录管理、入住费用管理、护工薪资管理、护工请假管理、床位管理、请假管理等 护…

消息中间件:RabbitMQ

消息中间件&#xff1a;RabbitMQ 前言安装Window安装Linux安装 管理页面什么是RabbitMQ&#xff1f;入门基本概念简单队列工作队列&#xff08;Work Queues&#xff09;发布/订阅&#xff08;Publish/Subscribe&#xff09;临时队列 路由&#xff08;Routing&#xff09;主题&a…

NanoDet安装教程

目录 1.安装NanoDet 1.1官网下载NanoDet 1.2 创建虚拟conda环境 1.3安装Pytorch库 2.侦测 3.训练 3.1yml文件修改 3.训练 3.1yml文件修改 轻量级模型 NanoDet-m 目标检测框架&#xff1a; YOLO 、 SSD 、 Fast R-CNN 等模型 &#xff1b;但模型太大&#xff0c;不适合移植到移…

HTTP状态码全解

文章目录 常见状态码1XX Informational&#xff08;请求正在处理&#xff09;2XX Success&#xff08;请求成功&#xff09;3XX Redirection&#xff08;重定向&#xff09;4XX Client Error&#xff08;客户端错误&#xff09;5XX Server Error&#xff08;服务器错误&#xf…

ros2安装完成后重要的一步

安装完成ros2之后&#xff0c;每次打开新的终端都需要 source /opt/ros/humble/setup.bash 为了解决这个为题&#xff0c;我们需要做如下操作,避免每次打开一个新的在终端都要设置。 在文件的最后一行添加 source /opt/ros/foxy/setup.bash

浸没式密封连接器

在当今科技快速发展的背景下&#xff0c;电子设备的整合度与性能需求持续提高&#xff0c;而连接技术作为电子设备间交互的关键&#xff0c;其重要性显而易见。在各式各样的连接技术当中&#xff0c;浸没式密封连接器凭借其独到设计和高超性能&#xff0c;在特定使用环境中显示…

学习经验分享【38】YOLOv11解读——最新YOLO版本

YOLO算法更新速度很快&#xff0c;已经出到V11版本&#xff0c;后续大家有想发论文或者搞项目可更新自己的baseline了。后续将改进YOLOv11算法&#xff0c;有需要的朋友可关注&#xff0c;我会持续进行更新。 YOLO11是Ultralytics YOLO系列实时目标检测器的最新迭代版本&#x…

《Linux从小白到高手》理论篇(七):Linux的时间管理运行级别启动过程原理详解

List item 本篇将介绍Linux的时间管理&运行级别相关知识&#xff0c;并将深入介绍Linux的启动过程及原理。 Linux的时间管理 Linux 时钟分为系统时钟&#xff08;System Clock&#xff09;和硬件&#xff08;Real Time Clock&#xff0c;简称 RTC&#xff09;时钟。系统时…

STM32CubeMX创建STM32H743工程

1、下载安装STM32CubeMX STM32CubeMX是STM32Cube工具家族中的一员&#xff0c;从MCU/MPU选型&#xff0c;引脚配置&#xff0c;系统时钟以及外设时钟设置&#xff0c;到外设参数配置&#xff0c;中间件参数配置&#xff0c;它给STM32开发者们提供了一种简单&#xff0c;方便&a…

华为OD机试 - 积木最远距离(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…