之前国外有一初学者小哥在Google Colab(A100 40G)利用DPO微调Mistral 7B,微调后的模型在基准测试中取得不错的成绩,从那时起,我觉得在笔记本电脑上运行/微调大模型并非遥不可及的。
对于初学者而言,如果能在自己的笔记本运行/微调大模型,对自己学习大模型的信心也会大增。所以我最近开始着手准备《初学者笔记本电脑挑战大模型》系列文章,希望对各位想学习大模型的同学有所帮助。
我们在后续文章以笔记本电脑作为载体,从配置环境到运行大模型、到微调、再到RAG、再到大模型应用程序,逐渐展开相关介绍。之前已经提供笔记本配置大模型运行环境的相关介绍,### 笔记本电脑配置及环境
笔记本电脑配置: i9-13900HX/32GB,GPU 4090/16GB
主要使用的编程环境:JetBrains PyCharm,JetBrains WebStorms, Microsoft VS Code
操作系统:Windows 11, WSL Ubuntu
笔记本跑大语言模型简介
我们进入正题,如何在笔记本跑大语言模型?方法有很多种,总结来说,包括llama.cpp(GGUF),ExLlamaV2,AutoGPTQ,AutoAWQ,GPTQ-for-LLaMa以及直接调用huggingface transformers,使用的工具包括LMStudio、oobabooga/text-generation-webui,ollama,llama.cpp等工具,目前性能最好的是EXLlamaV2,但只有oobabooga/text-generation-webui支持,而GGUF格式(该格式是llama.cpp2023年8月推出的格式,用以取代GGML格式,用于GPU/CPU的推理)有很多工具支持。
Ollama介绍
我们今天介绍的工具是ollama,ollama是用Go语言写的开源大模型运行软件(你可以认为是llama.cpp的Go语言版),支持GPU/CPU混合模式,你可以根据自己笔记本电脑GPU、GPU显存以及CPU、内存的情况,选择不同量化版本的大模型。以下是一些参考大模型参数、GGUF文件大小以及下载模型指令:
可以基于量化后文件大小初步判断需要的内存或者显存,当然如果你要比较顺畅运行大模型,至少8G的内存/显存运行7B模型,至少16GB内存/显存运行13B,至少32GB内存/显存运行34B的模型。如果你硬要运行更大的模型,那么需要选择更低精度的量化。根据我电脑配置(16GB GPU显存/32G内存)情况,可以轻松跑7B fp16大模型,比如mistral_7b_16fb,也可以顺畅跑13b_int8,比如llama 2 13b Int8。但如果跑Yi 34B Q5_K_M模型就有点吃力,跑llama70b Q4_K_M更吃力。当然如果降低精度, Yi 34B Q4_K_M 或者Q3就比较顺畅。
ollama安装及使用
安装前的准备
目前ollama支持MacOS和Linux,如果要在Windows使用,需要安装WSL的Ubuntu(目前我就是通过这种方式使用ollama),并且配置WSL的CUDA(如果你有NVidia的GPU,一定要配置好CUDA,这样模型的推理才能使用GPU,推理速度才能更快)。
你可以通过nvidia-smi指令来确认是否安装好WSL的CUDA,如下所示:
接下来安装ollama,安装ollama很简单,通过如下指令即可:
curl https://ollama.ai/install.sh| sh
如果你之前没有安装过curl,可以通过如下指令安装:
sudo apt-get install curl
模型下载和运行
到ollama网站寻找你需要使用的模型,该网站有热门的模型Mistral、llama2等可供下载。
当然如果你需要大模型来辅助你编写代码,你可以下载codellama或者deepseek coder,如下图所示:
找到相应的模型,并拷贝模型下载运行代码,比如下载运行deepseek-coder 6.7b q8量化版
ollama run deepseek-coder:6.7b-base-q8_0
对我的这样配置笔记本电脑来说,运行6.7B Q8量化版很顺畅。
模型运行监控
如果要监控ollama的运行状态,可以输入如下指令:
journalctl -u ollama.service |tail -n 200 |more
总的来说,ollama在Windows的WSL中的安装很简单,下载和运行模型也简单,相信你会喜欢上它的。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓