面试中顺序表常考的十大题目解析

news2024/11/18 14:00:04

在数据结构与算法的面试中,顺序表是一个常见的考点。它作为一种基础的数据结构,涵盖了多种操作和概念,以下将详细介绍面试中关于顺序表常考的十大题目。

💝💝💝如果你对顺序表的概念与理解还存在疑惑,欢迎观看我之前的作品👉 【顺序表】


目录

一、顺序表的定义和基本概念

题目示例

⭐答案

二、顺序表的插入操作

题目示例

⭐答案

三、顺序表的删除操作

题目示例

⭐答案

四、顺序表的查找操作

题目示例

⭐答案

五、顺序表的遍历操作

题目示例

⭐答案

六、顺序表的初始化操作

题目示例

⭐答案

七、顺序表的扩容操作

题目示例

⭐答案

八、顺序表与其他数据结构的比较

题目示例

⭐答案

九、顺序表的排序操作(简单排序 - 冒泡排序)

题目示例

⭐答案

十、顺序表在实际应用中的场景

题目示例

⭐答案


一、顺序表的定义和基本概念

题目示例

  • 来源:这是对顺序表基础知识的直接考查,通常出现在面试开场,用于初步了解应聘者对顺序表的理解程度。
    • “请简要描述顺序表是什么,它的存储结构特点是什么?”

⭐答案

顺序表是用一组地址连续的存储单元依次存储线性表中的数据元素。它的特点逻辑上相邻的数据元素在物理存储位置上也相邻。例如,若有一个顺序表存储整数,假设第一个元素存储在地址为 1000 的内存单元,每个元素占用 4 个字节的存储空间,那么第二个元素就存储在 1004 这个地址,以此类推。这种存储方式使得顺序表可以随机访问,即通过元素的序号(索引)能够在 O (1) 时间内访问到指定元素。

 

二、顺序表的插入操作

题目示例

  • 来源插入操作是顺序表的基本操作之一,考查应聘者对顺序表插入算法的理解和编写能力,以及对时间复杂度的分析能力,在各类数据结构相关面试中较为常见。
    • “给定一个有 n 个元素的顺序表,编写一个函数实现将一个新元素插入到指定位置 i(0 <= i <= n)的功能,并分析其时间复杂度。”

⭐答案

  • 算法步骤
    1. 首先判断插入位置 i 是否合法,即 0 <= i <= n。如果不合法,返回错误信息。
    2. 若插入位置合法,从最后一个元素开始,将第 n - 1 个元素移动到第 n 个元素的位置,第 n - 2 个元素移动到第 n - 1 个元素的位置,依次类推,直到将第 i 个元素及其后面的元素都向后移动一位。
    3. 将新元素插入到位置 i
  • 时间复杂度:在最坏的情况下(插入到表头),需要移动 n 个元素,所以时间复杂度为 O(n) 例如,顺序表中有元素 1, 2, 3,要在表头插入一个元素 0,需要将 1、2、3 依次向后移动一位,总共移动 3 次。

C++ 代码示例: 

#include <iostream>
using namespace std;

class SeqList {
private:
    int* data;
    int capacity;
    int size;

public:
    SeqList(int initialCapacity) {
        capacity = initialCapacity;
        data = new int[capacity];
        size = 0;
    }

    ~SeqList() {
        delete[] data;
    }

    // 在指定位置插入元素
    void insert(int position, int value) {
        if (position < 0 || position > size) {
            cout << "Invalid position for insertion." << endl;
            return;
        }
        if (size == capacity) {
            int newCapacity = capacity * 2;
            int* newData = new int[newCapacity];
            for (int i = 0; i < size; i++) {
                newData[i] = data[i];
            }
            delete[] data;
            data = newData;
            capacity = newCapacity;
        }
        for (int i = size; i > position; i--) {
            data[i] = data[i - 1];
        }
        data[position] = value;
        size++;
    }

    void printList() {
        for (int i = 0; i < size; i++) {
            cout << data[i] << " ";
        }
        cout << endl;
    }
};

 

三、顺序表的删除操作

题目示例

  • 来源:与插入操作相对应,删除操作也是顺序表的重要考点之一,面试官通过此类题目考查应聘者对顺序表删除算法的掌握情况和时间复杂度分析能力,在数据结构面试中较为常见。
    • “写一个函数删除顺序表中指定位置 i(0 <= i < n)的元素,并说明时间复杂度。”

⭐答案

  • 算法步骤
    • 先判断删除位置 i 是否合法,若不合法(i <0 或者 i>= n),返回错误信息。
    • 从位置 i + 1 开始,将第 i + 1 个元素移动到第 i 个元素的位置,第 i + 2 个元素移动到第 i + 1 个元素的位置,依次类推,直到将最后一个元素移动到倒数第二个元素的位置。
    • 表长减 1。
  • 时间复杂度:在最坏的情况下(删除表头元素),需要移动 n - 1 个元素,所以时间复杂度为 O (n)
  • C++ 代码示例(可在上述 SeqList 类中添加以下方法)
    // 删除指定位置的元素
    void remove(int position) {
        if (position < 0 || position >= size) {
            cout << "Invalid position for removal." << endl;
            return;
        }
        for (int i = position; i < size - 1; i++) {
            data[i] = data[i + 1];
        }
        size--;
    }

 

四、顺序表的查找操作

题目示例

  • 来源查找操作是数据结构中常用的基本操作之一,在数据结构和算法面试中经常出现,用于考查应聘者对顺序表查找算法的理解和实现能力,以及对时间复杂度的分析。
    • “在顺序表中查找一个给定元素 x,返回其首次出现的位置,若不存在则返回 -1。分析时间复杂度。”

⭐答案

  • 算法步骤
    1. 从顺序表的第一个元素开始,依次比较每个元素与给定元素 x
    2. 如果找到相等的元素,返回其位置(索引)。
    3. 如果遍历完整个顺序表都没有找到,则返回 -1
  • 时间复杂度:在最坏的情况下,需要遍历整个顺序表,时间复杂度为 O (n)
  • C++ 代码示例(可在上述 SeqList 类中添加以下方法)
    // 查找指定元素的位置
    int search(int value) {
        for (int i = 0; i < size; i++) {
            if (data[i] == value) {
                return i;
            }
        }
        return -1;
    }

五、顺序表的遍历操作

题目示例

  • 来源遍历操作是对顺序表整体操作的基础,常出现在数据结构基础面试环节或与其他操作结合考查,以检验应聘者对顺序表基本访问方式的掌握程度。
    • “写一个函数实现顺序表的遍历,打印出顺序表中的所有元素。”

⭐答案

  • C++ 代码示例(上述 SeqList 类中的 printList 方法即为遍历操作的实现)
void printList() {
    for (int i = 0; i < size; i++) {
        cout << data[i] << " ";
    }
    cout << endl;
}

 

六、顺序表的初始化操作

题目示例

  • 来源初始化是顺序表使用的前提,在涉及顺序表实际应用的面试问题中可能出现,考查应聘者对顺序表创建和初始状态设置的理解。
    • “如何初始化一个顺序表,使其具有一定的初始容量?”

⭐答案

  • C++ 代码示例(上述 SeqList 类的构造函数即为初始化操作的实现)
SeqList(int initialCapacity) {
    capacity = initialCapacity;
    data = new int[capacity];
    size = 0;
}

 

七、顺序表的扩容操作

题目示例

  • 来源:在实际应用中,顺序表可能会面临存储空间不足的情况,扩容操作是解决这一问题的关键,面试官通过此类题目考查应聘者对顺序表动态管理的理解和实现能力,常见于数据结构实际应用相关的面试中。
    • “当顺序表已满,需要插入新元素时,如何实现顺序表的扩容?并分析扩容操作的时间复杂度。”

⭐答案

  • 算法步骤(已在插入操作的代码中体现,这里再次说明)
    1. 首先创建一个新的、更大容量的存储数组。通常新容量是原容量的一定倍数(例如 2 倍)。
    2. 将原顺序表中的元素逐个复制到新的存储数组中。
    3. 释放原顺序表的存储空间,将新的存储数组赋值给原顺序表的指针
  • 时间复杂度:假设原顺序表有 n 个元素,扩容并复制元素的操作时间复杂度为 O (n),因为需要遍历原顺序表中的每个元素并复制到新数组中。

八、顺序表与其他数据结构的比较

题目示例

  • 来源了解不同数据结构的特点和适用场景是程序员的基本素养之一,通过此类题目考查应聘者对数据结构的综合理解和分析能力,在数据结构选型和优化相关的面试问题中经常出现。
    • “请比较顺序表和链表的优缺点。”

⭐答案

  • 顺序表的优点
    • 可以随机访问,通过索引能在 O (1) 时间内访问任意元素。例如,在一个存储学生成绩的顺序表中,要查询第 5 个学生的成绩,能够快速定位。
    • 存储密度高,因为不需要额外的指针来存储元素之间的关系,空间利用率相对较高。
  • 顺序表的缺点
    • 插入和删除操作可能需要移动大量元素,时间复杂度为 O (n),效率较低。例如,在一个已经排好序的顺序表中插入一个新元素,可能会引起后续元素的大量移动。
    • 大小固定(如果不进行扩容操作),初始化后容量不易改变。
  • 链表的优点
    • 插入和删除操作灵活,只要修改指针即可,时间复杂度为 O (1)(在已知插入或删除位置的情况下)。例如,在一个链表中插入一个新节点,只需要修改相邻节点的指针。
  • 链表的缺点
    • 不能随机访问,需要从头节点开始逐个遍历节点才能访问到指定元素,时间复杂度为 O (n)。
    • 存储密度相对较低,因为每个节点除了存储数据元素外,还需要存储指向下一个节点的指针。

九、顺序表的排序操作(简单排序 - 冒泡排序)

题目示例

  • 来源排序是数据处理中的常见任务,考查应聘者对顺序表中数据排序算法的理解和应用能力,在算法和数据结构综合考查的面试中较为常见,冒泡排序是一种基础的排序算法,常被用于考查对排序原理的掌握。
    • “用冒泡排序对顺序表进行排序,简述其原理和时间复杂度。”

⭐答案

  • 原理
    • 从顺序表的第一个元素开始,比较相邻的两个元素。如果前面的元素大于后面的元素,则交换它们的位置。
    • 对整个顺序表进行一次这样的操作后,最大的元素就会 “浮” 到最后。
    • 然后对除了最后一个元素之外的其他元素重复上述过程,直到整个顺序表都有序
  • 时间复杂度:在最坏的情况下,需要进行 n (n - 1)/2 次比较和交换操作,所以时间复杂度为 O(n²)
  • C++ 代码示例(可在上述 SeqList 类中添加以下方法)
    // 冒泡排序
    void bubbleSort() 
    {
        for (int i = 0; i < size - 1; i++) 
        {
            for (int j = 0; j < size - i - 1; j++) 
                {
                    if (data[j] > data[j + 1]) 
                        {
                            int temp = data[j];
                            data[j] = data[j + 1];
                            data[j + 1] = temp;
                        }
                 }
        }
    }

 

十、顺序表在实际应用中的场景

题目示例

  • 来源:考查应聘者对顺序表实际应用的理解和经验,以及能否将数据结构知识与实际软件开发场景相结合,在注重实践能力的面试中经常出现。
    • “请举例说明顺序表在实际软件开发中的应用场景。”

⭐答案

  • 数据存储和查询:如存储学生信息(学号、姓名、成绩等),如果经常需要根据学号(假设学号是连续分配的)来查询学生信息,顺序表是一个很好的选择,因为可以通过学号(索引)快速定位学生记录。
  • 栈和队列的实现:栈可以用顺序表来实现,只需要在顺序表的一端(栈顶)进行插入和删除操作。对于队列,也可以用顺序表来实现,通过维护队头和队尾指针来进行入队和出队操作。
  • 简单的缓存系统可以用顺序表存储最近访问的数据,当缓存满时,可以按照一定的策略(如先进先出)删除元素,为新元素腾出空间。

 


 通过对面试中顺序表常考十大题目的深入分析,我们不仅详细阐述了每个知识点的核心内容,还提供了丰富的 C++ 代码示例,帮助你更好地理解和掌握顺序表的相关操作。

💝💝💝感谢你看到最后,点个赞再走吧!💝💝💝 

希望通过以下投票了解您对顺序表相关知识点的掌握情况和兴趣点,以便我们为您提供更有针对性的内容和更好的学习体验。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2176065.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Threejs进阶教程-着色器篇】8. Shadertoy如何使用到Threejs-基础版

【Threejs进阶教程-着色器篇】8. Shadertoy如何使用到Threejs - 基础版 前七篇地址,建议按顺序学习致谢带我入门的[X01动力装甲]大佬本文适用范围怎么样在Shadertoy中画出正圆形shadertoy中的坐标系比例转换理解Shadertoy的fragCoord理解Shadertoy中的iResolution 转移Shaderto…

SigmaStudio淡入淡出增益控件(Single SW slew vol(adjustable))延时分析

斜率范围1~23&#xff0c;参考12khz正弦波&#xff08;-17.99db,调减15.2db&#xff09;作为分析依据 一、淡入时间与斜率关系 斜率1-----淡入延时时间大概0.08毫秒 斜率2—淡入延时时间大概0.2毫秒 斜率3–淡入延时时间按大概0.5毫秒 斜率4–淡入延时时间大概1毫秒 斜率5–淡…

C++学习笔记之结构体

C学习笔记之结构体 https://www.runoob.com/cplusplus/cpp-struct.html 结构体是C中一种由用户自定义的数据类型&#xff0c;允许存储不同类型的数据项 1、定义结构体 使用struct语句定义结构体 结构体与C中的类看起来结构相似&#xff0c;同样是可以在其中定义成员变量和成员…

picgo + typora + gitee图床

Picgo打造个人图床&#xff0c;稳定又安全 解决Typora笔记上传到CSDN图片无法显示的问题 typora中

完全二叉树的节点个数 C++ 简单问题

完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没填满外&#xff0c;其余每层节点数都达到最大值&#xff0c;并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层&#xff0c;则该层包含 1~ 2h 个节点。 示例 1&#xff…

蓝桥杯—STM32G431RBT6(RTC时钟获取时间和日期)

一、RTC是什么&#xff0c;有什么用&#xff1f; 在 STM32 中&#xff0c;RTC&#xff08;Real-Time Clock&#xff0c;实时时钟&#xff09;主要有以下作用&#xff1a; 时间保持&#xff1a;即使在系统断电情况下&#xff0c;也能持续记录时间。&#xff08;需要纽扣电池供电…

解决银河麒麟V10密码过期无法登录的问题

解决银河麒麟V10密码过期无法登录的问题 1、问题描述2、 解决方法步骤一&#xff1a;更改密码步骤二&#xff1a;调整密码策略&#xff08;可选&#xff09; 3、总结 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在使用银河麒麟桌面操作系…

Java:选择排序

目录 直接选择排序 堆排序 基本思想&#xff1a; 每一次从待排序的数据元素中选出最小(或最大)的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完。 直接选择排序 思路1&#xff1a; 在元素集合array[i]--array[n-1]中选择关键码最大(小…

【论文阅读】视觉里程计攻击

Adversary is on the Road: Attacks on Visual SLAM using Unnoticeable Adversarial Patch 一、视觉SLAM的不安全因素 根据论文的分析&#xff0c;视觉SLAM由于完全依赖于特征&#xff0c;缺少验证机制导致算法不安全。前端在受到干扰的情况下&#xff0c;会导致误匹配增加&…

算法工程师重生之第十八天(修剪二叉搜索树 将有序数组转换为二叉搜索树 把二叉搜索树转换为累加树 总结篇 )

参考文献 代码随想录 一、修剪二叉搜索树 给你二叉搜索树的根节点 root &#xff0c;同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树&#xff0c;使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即&#xff0c;如果没有被移除…

【Sentinel-2简介】

Sentinel-2简介 Sentinel-2是欧洲空间局&#xff08;European Space Agency, ESA&#xff09;全球环境和安全监视&#xff08;即哥白尼计划&#xff09;系列卫星的重要组成部分&#xff0c;由Sentinel-2A和Sentinel-2B两颗卫星组成。以下是关于Sentinel-2的详细介绍&#xff1…

信息安全工程师(27)环境安全分析与防护

前言 环境安全分析与防护是一个综合性的议题&#xff0c;涉及多个方面&#xff0c;包括环境安全的概念、分析方法、存在的安全隐患以及相应的防护措施。 一、环境安全的概念 环境安全是指人类赖以生存发展的环境&#xff0c;处于一种不受污染和破坏的安全状态&#xff0c;或者说…

828华为云征文 | 华为云X实例CPU性能测试详解与优化策略

目录 引言 1. 测试环境搭建 1.1 测试实例的选择 1.2 CPU性能测试工具介绍 1.3 安装和配置Sysbench 2. CPU性能测试方法 2.1 测试场景设定 2.2 Sysbench单线程CPU性能测试 2.3 Sysbench多线程CPU性能测试&#xff08;4线程&#xff09; 2.4 高强度多线程CPU性能测试&a…

【QT 开发日志】QT 基础控件详解:按钮、文本框与标签的使用

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 博主简介 博主致力于嵌入式、Python、人工智能、C/C领域和各种前沿技术的优质博客分享&#xff0c;用最优质的内容带来最舒适的…

努比亚 Z17 NX563J Root 教程三方REC刷写工具教程

教程&#xff1a;1&#xff0c;自用成功 正常链接列表 adb devices 检查fastboot链接列表 fastboot devices 解锁设备fastboot oem nubia_unlock NUBIA_NX563J 我用的解锁设备是&#xff1a;fastboot flashing unlock 1.打开开发者选项。将OEM解锁的按钮打开 2.下载附件努…

【刷点笔试面试题试试水】不使用任何中间变量如何将a、b的值进行交换?

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> using namespace std;void swap1(int&am…

Cpp::STL—string类的使用与理解(下)(9)

文章目录 前言一、string类对象的修改operator (重点)assigninserterasereplacec_str 二、string类对象的查找findrfindsubstr 三、string类非成员函数operatorrelational operatorgetline 四、VS和g下string结构说明vs下string的结构g下string结构 总结 前言 我认为要想详尽认…

Json 在线可视化工具,分享几个

文章目录 1.json.cn2.json4u.cn3.jsonvisual.com4.jsoncrack5.altearius.github.io6.json.wanvb.com 前序&#xff1a;本文是对多种 Json 在线可视化工具 的介绍、分享。Json官网 https://www.json.org/json-en.html 个人比较中意第四款&#xff1a; https://jsoncrack.com/ed…

数据仓库简介(一)

数据仓库概述 1. 什么是数据仓库&#xff1f; 数据仓库&#xff08;Data Warehouse&#xff0c;简称 DW&#xff09;是由 Bill Inmon 于 1990 年提出的一种用于数据分析和挖掘的系统。它的主要目标是通过分析和挖掘数据&#xff0c;为不同层级的决策提供支持&#xff0c;构成…

Vector不清晰点学习易错点

什么是迭代器 是一个广义指针它可以是指针&#xff0c;也可以是一个可对其执行类似指针得操作-如解除引用&#xff08;如operator*()&#xff09;和递增&#xff08;operator()&#xff09;STL中每个容器类都定义了一个合适的迭代器&#xff0c;该迭代器的类型是一个名为itera…