1.面向过程和面向对象初步认识
C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。
C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成
2.类的引入
C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数。比如:之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct中也可以定义函数:
typedef int DataType;
struct Stack
{
void Init(size_t capacity)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (nullptr == _array)
{
perror("malloc申请空间失败"); return;
}
_capacity = capacity;
_size = 0;
}
void Push(const DataType& data)
{
// 扩容
_array[_size] = data;
++_size; }
DataType Top()
{return _array[_size - 1];
}
void Destroy()
{
if (_array) {
free(_array); _array = nullptr; _capacity = 0; _size = 0;
}}
int main()
{
Stack s; s.Init(10); s.Push(1); s.Push(2); s.Push(3); cout << s.Top() << endl; s.Destroy(); return 0;}
3.类的定义
class className
{ // 类体:由成员函数和成员变量组成}; // 一定要注意后面的分号
class为定义类的关键字,ClassName为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。
类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者成员函数。
类的两种定义方式:
1. 声明和定义全部放在类体中,需注意:成员函数如果在类中定义,编译器可能会将其当成内
联函数处理。
2. 类声明放在.h文件中,成员函数定义放在.cpp文件中,注意:成员函数名前需要加类名::
4.类的访问限定符及封装
4.1 访问限定符
C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用
问题:C++中struct和class的区别是什么?
解答:C++需要兼容C语言,所以C++中struct可以当成结构体使用。另外C++中struct还可以用来定义类。和class定义类是一样的,区别是struct定义的类默认访问权限是public,class定义的类默认访问权限是private。注意:在继承和模板参数列表位置,struct和class也有区别,后序给大家介绍。
5.类的作用域
类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 ::作用域操作符指明成员属于哪个类域。
class Person
{ public: void PrintPersonInfo(); private: char _name[20]; char _gender[3]; int _age; }; // 这里需要指定PrintPersonInfo是属于Person这个类域 void Person::PrintPersonInfo() { cout << _name << " "<< _gender << " " << _age << endl;}
6.类的实例化
用类类型创建对象的过程,称为类的实例化
1. 类是对对象进行描述的,是一个模型一样的东西,限定了类有哪些成员,定义出一个类并没有分配实际的内存空间来存储它;比如:入学时填写的学生信息表,表格就可以看成是一个类,来描述具体学生信息。
类就像谜语一样,对谜底来进行描述,谜底就是谜语的一个实例。谜语:"年纪不大,胡子一把,主人来了,就喊妈妈" 谜底:山羊😊
2. 一个类可以实例化出多个对象,实例化出的对象 占用实际的物理空间,存储类成员变量
int main()
{
Person._age = 100; // 编译失败:error C2059: 语法错误:“.”
return 0;}
Person类是没有空间的,只有Person类实例化出的对象才有具体的年龄。
3. 做个比方。类实例化出对象就像现实中使用建筑设计图建造出房子,类就像是设计图,只设计出需要什么东西,但是并没有实体的建筑存在,同样类也只是一个设计,实例化出的对象才能实际存储数据,占用物理空间
5. 内存对齐
内存对齐是计算机系统中用于优化数据访问的机制。在C++中,类的成员变量在内存中的存放位置要遵循特定的对齐规则,以提高CPU的访问效率。
这部分内容在C语言结构体详细介绍过,详情请见【C语言篇】结构体和位段详细介绍
5.1 内存对齐规则
内存对齐规则规定:
1.第一个成员存储在偏移量为0的地址处。
2.其他成员必须存储在某个对齐数的整数倍的地址处。
3.对齐数取决于编译器的设置和变量的类型,通常为4字节或8字节。
5.2 示例代码
#include<iostream>
using namespace std;class A {
private:
char _ch; // 1 字节
int _i; // 4 字节
};int main() {
A a;
cout << "对象 A 的大小: " << sizeof(a) << " 字节" << endl; // 输出对象大小
return 0;
}
解释
尽管 A 类中的 _ch 和 _i 变量加起来只有 5 字节,但由于内存对齐规则,类的实际大小为 8 字节。这是因为 int 变量 _i 要求4字节对齐,而 char 只占1字节,因此在 char 后面会插入3个字节的填充空间,以便 int 对齐到4字节边界。
拓展解释:为什么需要内存对齐?
内存对齐的意义:内存对齐的目的是为了优化CPU的读取速度。在现代计算机架构中,处理器一次性读取的内存块大小通常为4字节或8字节。如果数据存储在不对齐的地址上,处理器需要执行更多的操作来读取数据,从而影响性能。因此,通过对齐存储,处理器可以更快速地读取和写入数据。内存对齐和空间浪费:虽然内存对齐提高了数据访问的效率,但也可能会造成空间浪费。例如,在上例中,char 类型只需要1字节,但为了对齐 int,额外浪费了3个字节的填充空间。这种权衡在性能优化和内存空间利用之间找到了平衡。
5.3 内存对齐的影响
内存对齐会影响类的实际大小。例如,以下代码展示了不同对齐方式下对象的大小变化:
#include<iostream>
#pragma pack(1) // 设置内存对齐为1字节
using namespace std;class B {
public:
char _ch; // 1字节
int _i; // 4字节
};int main() {
B b;
cout << "对象 B 的大小: " << sizeof(b) << " 字节" << endl; // 输出对象 B 的大小为 5 字节
return 0;
}
#pragma pack() // 恢复默认对齐
解释
通过使用 #pragma pack(1) 指令,我们将类 B 的内存对齐设置为 1 字节对齐。这样,char 类型占用 1 字节,int 类型占用 4 字节,总共5字节,没有插入额外的填充字节。
6.this指针
6.1 this指针的引出
我们先来定义一个日期类 Date
// 类中仅有成员函数
class A2 {
public:
void f2() {}
};
// 类中什么都没有---空类
class A3
{};
class Date
{ public:
void Init(int year, int month, int day)
{
_year = year; _month = month; _day = day;
}
void Print()
{
cout <<_year<< "-" <<_month << "-"<< _day <<endl;
}
对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?
C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。
6.2 this指针的特性
1. this指针的类型:类类型* const,即成员函数中,不能给this指针赋值。
2. 只能在“成员函数”的内部使用
3. this指针本质上是“成员函数”的形参,当对象调用成员函数时,将对象地址作为实参传递给
this形参。所以对象中不存储this指针。
4. this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传
递,不需要用户传递