最近私信问我关于入行、转行方面的问题比较多,就专门写一篇讲讲我的理解。
首先说明一下个人的背景和现状,我本人是本科学历,有互联网大厂搜推方向经验,后来跳到中厂继续做推荐,去年开始做大模型。现在是个小组长,做以应用落地为目的的大模型方向工作。
现在大模型算法涉及的工作主要分为这几个方向:
1.偏底层的训练和推理框架工作,比如colossal-ai、vlm这些,各厂如果自建集群搭建训练推理框架的话也会有一部分工作与之重合;
2.预训练;
3.Alignment;
4.应用开发;
上面也就十分粗略的简单做了个划分,其实很多界限并不清晰,只是为了后面叙述有个结构。
底层框架
这一层我是没太接触过的,不过公司内有做这方面的人。以我粗浅的认知,这些人的技术栈和以前搞GPU算子优化、分布式框架的那拨人重合度比较高。不太懂就不多说了。
预训练
在我看来,预训练这块的工作最终肯定是赢家通吃的。现在只是因为大家都还在同一个水平线上,也没有能和开源拉开差距,卖api也卖不了多少,所以看起来竞争还挺激烈。等到决出三六九等之后肯定没有必要存在那么多团队做pretrain。况且即使做pretrain的团队,真正核心在干活的也没几个人。一千张卡可能不够供一个人用,卡就那么多,配用的人也就那么多。剩下的人做的事情我觉得都不是那么有意义,不是说洗数据啥的不重要,重要,但对大多数人来说对个人价值提升不大。我之前也自己做基于llama的继续pretrain,现在这块工作已经完全放弃了,感觉没啥意义。
再有,所谓垂直领域大模型这个事情我觉得大概率是个伪命题,各方面知识应该是相互促进补充的,遵循奥卡姆剃刀原理我相信最终就是一个模型破一切。
所以我认为虽然现在预训练目前在就业市场上可能还是有比较大的需求量的,但是很多就是纯跟风,迟早得死。对于择业的建议就是:自信自己顶级天赋顶级卷度,势要干翻gpt4的人选这个。
Alignment
我其实觉得sft和强化学习都可以放一起,不知道我这个小标题准不准确。反正都是在基座上进一步提升对话的效果。这块工作其实就开始一定程度接近业务了,比如目前,很多业务团队都会根据下游任务来构造数据进行sft训练。会不会以后基座足够强之后全靠few shot啥的就完全解决问题,这个我不敢猜测。至少在国内,基于开源模型做sft拿到业务上用,应该是挺长一段时间会保持的状态,所以这个方向看起来我觉得是目前市场上需求较大,未来一段时间也还是会持续有比较大需求量的。想训模型的可以选这个方向我觉得挺好
应用开发
这一块的岗位其实现在大家看到的还不多,主要可能有两个原因吧,第一是openai的接口在国内直接用是有监管问题的。第二是国内开源模型的水平还不行,以及一些相关链路上的工作还没做完(比如functioncalling)。所以时机还不成熟,还不到LLM native应用大规模爆发的时候。
但是我觉得毫无疑问这个方向的人才需求以后将远远超出前面几个方向加起来,这就像是你搞安卓系统和安卓应用开发的对比一样。做操作系统开发才几个人,安卓开发那真是不知道有多少了。
我预计这个时间也不会太长,一两年肯定够了,所以现在找这个方向的机会开始布局也是很不错的。不过先训训模型等真的有机会起来也没问题,毕竟你做应用开发对系统原理了解清楚肯定是优势,
其他
其实除了上面说这些,还存在一些其他的方向,比如类似guidance这样在align模型之后的,和推理框架绑定比较强的组件,我觉得以后应该会融入到推理框架的范围内。
总结
最后简单总结一下,我认为现在总体的行业形势是资本进行了大规模投入,但是基本堆在预训练上,然后这个环节也容纳不了太多人就业,而且暂时也创造不了多少商业价值。所以很有可能一段时间后会有一个下行的阶段,现在做预训练这些创业公司死一批。然后随着应用端的工作越来越多,大家慢慢把投入方向往下移,往应用端发力,这时候会有一些找准机会和方向的公司出来。顺利的话各种LLM native应用就走入千家万户。(就纯粹我自己的想象哈哈哈)
总的来说我认为LLM肯定是一个好的方向,现在进来不管做什么,也算是比较早的了解原理的人,后面做应用应该也会有一些优势。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓