神经网络(四):UNet图像分割网络

news2025/1/10 21:10:11

文章目录

  • 一、简介
  • 二、网络结构
    • 2.1编码器部分
    • 2.2解码器部分
    • 2.3完整代码
  • 三、实战案例


一、简介

  UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。该网络具有编码器和解码器结构,两种结构的功能如下:

  • 编码器:逐步提取输入图像的特征并降低空间分辨率。
  • 解码器:通过上采样操作将特征图恢复到原始输入图像的尺寸,并逐步生成分割结果。

【CNN角度的编码器、解码器】以卷积神经网络为例,输入为一个猫,进行特征提取后输出图片类别。

  • 编码器:完成对输入图片中猫的特征提取。
  • 解码器:将特征提取的结果解码为分类结果。

在这里插入图片描述
【RNN角度的编码器、解码器】以循环神经网络LSTM为例,输入为一个文本,进行特征提取再输出

  • 编码器:将文本表示为向量并实现特征提取。
  • 解码器:将向量转化为输出。

在这里插入图片描述
  UNet算法的关键创新是在解码器中引入了跳跃连接(Skip Connections),即将编码器中的特征图与解码器中对应的特征图进行连接。这种跳跃连接可以帮助解码器更好地利用不同层次的特征信息,从而提高图像分割的准确性和细节保留能力。

二、网络结构

  UNet的设计思想是通过编码器逐渐提取丰富的低级特征和高级特征,然后通过解码器逐渐恢复分辨率,并将低级特征和高级特征进行融合,以便获取准确且具有上下文信息的分割结果。这种U字形结构使得UNet能够同时利用全局(高分辨率时的特征图)和局部信息(低分辨率时的特征图),适用于图像分割任务。执行过程可粗略描述为:

输入层 -> 编码器(下采样模块 + 编码器模块) -> 解码器(上采样模块 + 解码器模块)-> 输出层。

即:

  • 编码器(Encoder)部分
    • 输入层:接受输入图像作为模型的输入
    • 下采样模块(Downsampling Block):由一系列卷积层(通常是卷积、批归一化和激活函数的组合)和池化层组成,用于逐渐减小特征图的尺寸和通道数。这样可以逐渐提取出更高级别的特征信息。
    • 编码器模块(Encoder Block):重复使用多个下采样模块,以便逐渐减小特征图的尺寸和通道数。每个编码器模块通常包含一个下采样模块和一个跳跃连接(Skip Connection),将上一级的特征图连接到下一级,以便在解码器中进行特征融合。
  • 解码器(Decoder)部分
    • 上采样模块(Upsampling Block):由一系列上采样操作(如反卷积或转置卷积)和卷积操作组成,用于逐渐增加特征图的尺寸和通道数。这样可以逐渐恢复分辨率并且保留更多的细节信息。
    • 解码器模块(Decoder Block):重复使用多个上采样模块,以便逐渐增加特征图的尺寸和通道数。每个解码器模块通常包含一个上采样模块、一个跳跃连接和一个融合操作(如拼接或加权求和),用于将来自编码器的特征图与当前解码器的特征图进行融合。
  • 输出层:最后一层是一个卷积层,用于生成最终的分割结果。通常,输出层的通道数等于任务中的类别数,并应用适当的激活函数(如sigmoid或softmax),以产生每个像素点属于各个类别的概率分布。

跳跃连接(skip connection):输入数据直接添加到网络某一层输出之上。这种设计使得信息可以更自由地流动,并且保留了原始输入数据中的细节和语义信息。 使信息更容易传播到后面的层次,避免了信息丢失。跳跃连接通常会通过求和操作或拼接操作来实现。
在这里插入图片描述
以图像分类任务为例,假设我们使用卷积神经网络进行特征提取,在每个卷积层后面都加入一个池化层来减小特征图尺寸。然而,池化操作可能导致信息损失。通过添加一个跳跃连接,将原始输入直接与最后一个池化层输出相加或拼接起来,可以保留原始图像中更多的细节和语义信息。

  以下内容参考文章:点击跳转

2.1编码器部分

在这里插入图片描述
  编码器部分由多个下采样模块(down sampling step)组成,每个下采样模块都由两个卷积层(卷积核大小为3x3,且与ReLU函数配合使用。由于图像尺寸变小,可见并未填充)和一个最大池化层(池化核大小2x2,步幅为2,将图像尺寸收缩一半)组成,并且每一次下采样操作后特征图的通道数均增加一倍。
  事实上,随着不断执行下采样模块(也成为收缩路径),特征图通道数随着卷积操作也不断增加,从而获取了图像的更多特征。并且在进入下一下采样模块前,进行 2x2 最大池化以获得最大像素值,虽然丢失一些特征,但保留最大像素值。通过这种方式,可将图像中目标的像素按类别进行分割。每一下采样模块的实现代码如下:
【第一个下采样模块】
  卷积操作:

        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)
        #(572,572,1)->((572-3+1),(572-3+1),64)->(570,570,64)
        self.relu1_1 = nn.ReLU(inplace=True)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) 
        # (570,570,64)->((570-3+1),(570-3+1),64)->(568,568,64)
        self.relu1_2 = nn.ReLU(inplace=True)

  池化操作

#采用最大池化进行下采样,图片大小减半,通道数不变,由(568,568,64)->(284,284,64)
self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  

【第二个下采样模块】
  卷积操作:

        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  #(284,284,64)->(282,282,128)
        self.relu2_1 = nn.ReLU(inplace=True)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  #(282,282,128)->(280,280,128)
        self.relu2_2 = nn.ReLU(inplace=True)

  池化操作:

# 采用最大池化进行下采样(280,280,128)->(140,140,128)
self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  

  编码器部分总代码:

class Unet(nn.Module):
    def __init__(self):
        super(Unet, self).__init__()
        #第一个下采样模块
        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)
        self.relu1_1 = nn.ReLU(inplace=True)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) 
        self.relu1_2 = nn.ReLU(inplace=True)

		self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  
		#第二个下采样模块
        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  #(284,284,64)->(282,282,128)
        self.relu2_1 = nn.ReLU(inplace=True)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  #(282,282,128)->(280,280,128)
        self.relu2_2 = nn.ReLU(inplace=True)

        self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  
		#第三个下采样模块
        self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=0)
        self.relu3_1 = nn.ReLU(inplace=True)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)
        self.relu3_2 = nn.ReLU(inplace=True)

        self.maxpool_3 = nn.MaxPool2d(kernel_size=2, stride=2)
		#第四个下采样模块
        self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=0)
        self.relu4_1 = nn.ReLU(inplace=True)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)
        self.relu4_2 = nn.ReLU(inplace=True)

        self.maxpool_4 = nn.MaxPool2d(kernel_size=2, stride=2) 
		#第五个下采样模块
        self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=0)  # 32*32*512->30*30*1024
        self.relu5_1 = nn.ReLU(inplace=True)
        self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0)
        self.relu5_2 = nn.ReLU(inplace=True)

在五个下采样操作后,特征图大小变为 ( 28 , 28 , 1024 ) (28,28,1024) (28,28,1024)

2.2解码器部分

在这里插入图片描述

  • up-conv 2x2:上采样操作,通过反卷积操作实现。
  • copy and crop:复制和裁剪,将下采样模块输出的特征图进行复制和裁剪,方便和上采样生成的特征图进行拼接。

  在下采样操作中,模型已经得到了所有类的像素特征值。虽然使用最大池化操作时丢失了一些细节信息,但无需担心。在上采样中,模型通过将具有相同下采样滤波器的级别的特征图复制到相同的上采样过滤器级别来获得完整的图像,从而保留特征。因此,我们得到完整的图像,并可以定位每个类的图像中存在的位置,并且,再次通过应用卷积来学习全尺寸图像。所以在上采样时,下采样模块输出的每个特征图都被添加到上采样模块的相应特征层中,以获得全分辨率图像,从而实现类别的定位,这一过程也被称为跳跃连接。
  第一个上采样模块细节如下:
在这里插入图片描述
  最下面的下采样模块输出特征图大小为 ( 28 , 28 , 1024 ) (28,28,1024) (28,28,1024),经过反卷积操作(up-conv 2x2)得到大小为 ( 56 , 56 , 512 ) (56,56,512) (56,56,512)的特征图,即尺寸扩大一倍,通道数减半。之后,将左侧下采样模块输出的 ( 64 , 64 , 512 ) (64,64,512) (64,64,512)图像进行复制并中心裁剪(copy and crop)同样转化为 ( 56 , 56 , 512 ) (56,56,512) (56,56,512)大小,并与之拼接得到 ( 56 , 56 , 1024 ) (56,56,1024) (56,56,1024)大小的特征图(可见,此拼接仅是通道方向的拼接)。代码实现:

# 上采样中反卷积操作的实现
self.up_conv_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0) # 28*28*1024->56*56*512

同理也可得到其他反卷积操作的实现:

self.up_conv_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2, padding=0) # 52*52*512->104*104*256
self.up_conv_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2, padding=0) # 100*100*256->200*200*128
self.up_conv_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2, padding=0) # 196*196*128->392*392*64

  右半部分卷积操作的代码实现:
【第一次卷积】

        self.conv6_1 = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1, padding=0)  # 56*56*1024->54*54*512
        self.relu6_1 = nn.ReLU(inplace=True)
        self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 54*54*512->52*52*512
        self.relu6_2 = nn.ReLU(inplace=True)

【第二次卷积】

        self.conv7_1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=0)  # 104*104*512->102*102*256
        self.relu7_1 = nn.ReLU(inplace=True)
        self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 102*102*256->100*100*256
        self.relu7_2 = nn.ReLU(inplace=True)

【第三次卷积】

        self.conv8_1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=0)  # 200*200*256->198*198*128
        self.relu8_1 = nn.ReLU(inplace=True)
        self.conv8_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 198*198*128->196*196*128
        self.relu8_2 = nn.ReLU(inplace=True)

【第四次卷积】

        self.conv9_1 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=0)  # 392*392*128->390*390*64
        self.relu9_1 = nn.ReLU(inplace=True)
        self.conv9_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 390*390*64->388*388*64
        self.relu9_2 = nn.ReLU(inplace=True)

【第五次卷积】

        # 最后的conv1*1
        self.conv_10 = nn.Conv2d(in_channels=64, out_channels=2, kernel_size=1, stride=1, padding=0) #64x388x388->2x388x388

  中心裁剪操作的实现:

    # 中心裁剪,
    def crop_tensor(self, tensor, target_tensor):
        target_size = target_tensor.size()[2]
        tensor_size = tensor.size()[2]
        delta = tensor_size - target_size
        delta = delta // 2
        # 如果原始张量的尺寸为10,而delta为2,那么"delta:tensor_size - delta"将截取从索引2到索引8的部分,长度为6,以使得截取后的张量尺寸变为6。
        return tensor[:, :, delta:tensor_size - delta, delta:tensor_size - delta]

【第一次上采样+拼接】

        # 第一次上采样,需要"Copy and crop"(复制并裁剪)
        up1 = self.up_conv_1(x10)  # 得到56*56*512
        # 需要对x8进行裁剪,从中心往外裁剪
        crop1 = self.crop_tensor(x8, up1)
        # 拼接操作
        up_1 = torch.cat([crop1, up1], dim=1)

【第二次上采样+拼接】

		# 第二次上采样,需要"Copy and crop"(复制并裁剪)
        up2 = self.up_conv_2(y2)
        # 需要对x6进行裁剪,从中心往外裁剪
        crop2 = self.crop_tensor(x6, up2)
        # 拼接
        up_2 = torch.cat([crop2, up2], dim=1)

【第三次上采样+拼接】

        # 第三次上采样,需要"Copy and crop"(复制并裁剪)
        up3 = self.up_conv_3(y4)
        # 需要对x4进行裁剪,从中心往外裁剪
        crop3 = self.crop_tensor(x4, up3)
        up_3 = torch.cat([crop3, up3], dim=1)

【第四次上采样+拼接】

        # 第四次上采样,需要"Copy and crop"(复制并裁剪)
        up4 = self.up_conv_4(y6)
        # 需要对x2进行裁剪,从中心往外裁剪
        crop4 = self.crop_tensor(x2, up4)
        up_4 = torch.cat([crop4, up4], dim=1)

2.3完整代码

在这里插入图片描述

import torch
import torch.nn as nn

class Unet(nn.Module):
    def __init__(self):
        super(Unet, self).__init__()
        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)  # 由572*572*1变成了570*570*64
        self.relu1_1 = nn.ReLU(inplace=True)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 由570*570*64变成了568*568*64
        self.relu1_2 = nn.ReLU(inplace=True)

        self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样,图片大小减半,通道数不变,由568*568*64变成284*284*64

        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  # 284*284*64->282*282*128
        self.relu2_1 = nn.ReLU(inplace=True)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 282*282*128->280*280*128
        self.relu2_2 = nn.ReLU(inplace=True)

        self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  280*280*128->140*140*128

        self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=0)  # 140*140*128->138*138*256
        self.relu3_1 = nn.ReLU(inplace=True)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 138*138*256->136*136*256
        self.relu3_2 = nn.ReLU(inplace=True)

        self.maxpool_3 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  136*136*256->68*68*256

        self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=0)  # 68*68*256->66*66*512
        self.relu4_1 = nn.ReLU(inplace=True)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 66*66*512->64*64*512
        self.relu4_2 = nn.ReLU(inplace=True)

        self.maxpool_4 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  64*64*512->32*32*512

        self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=0)  # 32*32*512->30*30*1024
        self.relu5_1 = nn.ReLU(inplace=True)
        self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0)  # 30*30*1024->28*28*1024
        self.relu5_2 = nn.ReLU(inplace=True)

        # 接下来实现上采样中的up-conv2*2
        self.up_conv_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0) # 28*28*1024->56*56*512


        self.conv6_1 = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1, padding=0)  # 56*56*1024->54*54*512
        self.relu6_1 = nn.ReLU(inplace=True)
        self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 54*54*512->52*52*512
        self.relu6_2 = nn.ReLU(inplace=True)

        self.up_conv_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2, padding=0) # 52*52*512->104*104*256

        self.conv7_1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=0)  # 104*104*512->102*102*256
        self.relu7_1 = nn.ReLU(inplace=True)
        self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 102*102*256->100*100*256
        self.relu7_2 = nn.ReLU(inplace=True)

        self.up_conv_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2, padding=0) # 100*100*256->200*200*128


        self.conv8_1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=0)  # 200*200*256->198*198*128
        self.relu8_1 = nn.ReLU(inplace=True)
        self.conv8_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 198*198*128->196*196*128
        self.relu8_2 = nn.ReLU(inplace=True)

        self.up_conv_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2, padding=0) # 196*196*128->392*392*64


        self.conv9_1 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=0)  # 392*392*128->390*390*64
        self.relu9_1 = nn.ReLU(inplace=True)
        self.conv9_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 390*390*64->388*388*64
        self.relu9_2 = nn.ReLU(inplace=True)

        # 最后的conv1*1
        self.conv_10 = nn.Conv2d(in_channels=64, out_channels=2, kernel_size=1, stride=1, padding=0)

    # 中心裁剪,
    def crop_tensor(self, tensor, target_tensor):
        target_size = target_tensor.size()[2]
        tensor_size = tensor.size()[2]
        delta = tensor_size - target_size
        delta = delta // 2
        # 如果原始张量的尺寸为10,而delta为2,那么"delta:tensor_size - delta"将截取从索引2到索引8的部分,长度为6,以使得截取后的张量尺寸变为6。
        return tensor[:, :, delta:tensor_size - delta, delta:tensor_size - delta]

    def forward(self, x):
        x1 = self.conv1_1(x)
        x1 = self.relu1_1(x1)
        x2 = self.conv1_2(x1)
        x2 = self.relu1_2(x2)  # 这个后续需要使用
        down1 = self.maxpool_1(x2)

        x3 = self.conv2_1(down1)
        x3 = self.relu2_1(x3)
        x4 = self.conv2_2(x3)
        x4 = self.relu2_2(x4)  # 这个后续需要使用
        down2 = self.maxpool_2(x4)

        x5 = self.conv3_1(down2)
        x5 = self.relu3_1(x5)
        x6 = self.conv3_2(x5)
        x6 = self.relu3_2(x6)  # 这个后续需要使用
        down3 = self.maxpool_3(x6)

        x7 = self.conv4_1(down3)
        x7 = self.relu4_1(x7)
        x8 = self.conv4_2(x7)
        x8 = self.relu4_2(x8)  # 这个后续需要使用
        down4 = self.maxpool_4(x8)

        x9 = self.conv5_1(down4)
        x9 = self.relu5_1(x9)
        x10 = self.conv5_2(x9)
        x10 = self.relu5_2(x10)

        # 第一次上采样,需要"Copy and crop"(复制并裁剪)
        up1 = self.up_conv_1(x10)  # 得到56*56*512
        # 需要对x8进行裁剪,从中心往外裁剪
        crop1 = self.crop_tensor(x8, up1)
        up_1 = torch.cat([crop1, up1], dim=1)

        y1 = self.conv6_1(up_1)
        y1 = self.relu6_1(y1)
        y2 = self.conv6_2(y1)
        y2 = self.relu6_2(y2)

        # 第二次上采样,需要"Copy and crop"(复制并裁剪)
        up2 = self.up_conv_2(y2)
        # 需要对x6进行裁剪,从中心往外裁剪
        crop2 = self.crop_tensor(x6, up2)
        up_2 = torch.cat([crop2, up2], dim=1)

        y3 = self.conv7_1(up_2)
        y3 = self.relu7_1(y3)
        y4 = self.conv7_2(y3)
        y4 = self.relu7_2(y4)

        # 第三次上采样,需要"Copy and crop"(复制并裁剪)
        up3 = self.up_conv_3(y4)
        # 需要对x4进行裁剪,从中心往外裁剪
        crop3 = self.crop_tensor(x4, up3)
        up_3 = torch.cat([crop3, up3], dim=1)

        y5 = self.conv8_1(up_3)
        y5 = self.relu8_1(y5)
        y6 = self.conv8_2(y5)
        y6 = self.relu8_2(y6)

        # 第四次上采样,需要"Copy and crop"(复制并裁剪)
        up4 = self.up_conv_4(y6)
        # 需要对x2进行裁剪,从中心往外裁剪
        crop4 = self.crop_tensor(x2, up4)
        up_4 = torch.cat([crop4, up4], dim=1)

        y7 = self.conv9_1(up_4)
        y7 = self.relu9_1(y7)
        y8 = self.conv9_2(y7)
        y8 = self.relu9_2(y8)

        # 最后的conv1*1
        out = self.conv_10(y8)
        return out
if __name__ == '__main__':
    input_data = torch.randn([1, 1, 572, 572])
    unet = Unet()
    output = unet(input_data)
    print(output.shape)
    # torch.Size([1, 2, 388, 388])

三、实战案例

  准备复现论文:点击跳转
  准备复现项目:点击跳转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2167105.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

程序执行过程中,报错debug errror damage :after normal block at

1.现象描述 Visual C 6.0运行一段程序,报错:debug errror damage :after normal block at(堆损坏了)。网上查了一下,说是内存访问越界。Debug模式下,点击忽略还能继续执行。 下面,我将通过断…

门牌风水大揭秘:如何通过八卦福·门牌提升居住运势

在现代家居风水理念中,门牌不仅是房屋的标识,更是影响居住运势的重要因素。八卦福门牌由于其独特的设计与深厚的文化内涵,已成为风水爱好者的新宠。通过合理运用八卦福门牌,我们可以有效提升家中的气场,增强运势。本文…

深入浅出 ResNet(残差网络)

一、引言 随着深度学习的发展,卷积神经网络(Convolutional Neural Networks, CNNs)在图像识别、目标检测等多个计算机视觉任务中取得了卓越的成绩。然而,随着网络深度的增加,训练变得更加困难,出现了梯度消…

2024网安周 | 百度安全深度参与,探索人工智能与数字安全的融合发展之路

9月9日-15日,2024年国家网络安全宣传周在全国范围内统一举行,本届网安周继续以“网络安全为人民,网络安全靠人民”为主题,由中央宣传部、中央网信办、教育部、工业和信息化部、公安部、中国人民银行、国家广播电视总局、全国总工会…

Javascript编译原理

JavaScript的编译原理是一个复杂但有序的过程,主要涉及分词(词法分析)、解析(语法分析)、代码生成以及执行等阶段。以下是对JavaScript编译原理的详细解析: chrome编译流程 1. 分词(词法分析&am…

宠物服务小程序的使用功能介绍

宠物服务小程序的使用功能丰富多样,旨在提升宠物主人的生活便利性和宠物的生活质量。以下是一些常见的宠物服务小程序使用功能: 1. 宠物服务商家展示与预约 商家信息展示:展示宠物服务商家的详细信息,包括店铺名称、地址、联系方…

企业为什么要上项目管理系统?项目管理的六大核心要素

随着企业规模的不断扩大和项目数量的增多,传统的手工管理方式已经无法满足企业在项目管理方面的需求。项目管理系统能够帮助企业实现项目信息的集中管理,将所有相关的项目信息(如任务、进度、预算、人员等)集中存储在一个平台上&a…

字节豆包C++一面-面经总结

talk is cheap show me the code lc206:链表反转:给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 class Solution { public:ListNode* reverseList(ListNode* head) {if(headnullptr||!head->next)return head…

线下线上陪玩系统要多少钱?该怎么搭建?

关于线下线上陪玩系统的价格,由于开发成本、功能复杂度、系统规模以及定制需求等因素的不同,价格差异较大,一般在几千元至几万元不等。具体价格需要根据实际需求和预算进行商议和定制。 搭建线下线上陪玩系统大致可以分为以下几个步骤&#…

推荐一款开源的链路监控系统

12.9k star,最强链路监控系统推荐,推荐 用过cat、pinpoint、skywalking等链路监控系统,各有优劣,但用的最多的还是pinpoint,工作6年,其中有4年都在用pinpoint,所以也比较熟悉,之前也…

戴尔笔记本电脑——重装系统

说明:我的电脑是戴尔G3笔记本电脑。 第一步:按照正常的装系统步骤,配置并进入U盘的PE系统 如果进入PE系统,一部分的硬盘找不到,解决办法:U盘PE系统——出现部分硬盘找不到的解决办法 第二步:磁…

年薪40W!转AI产品经理后,我明白了有人生的意义在哪了!

初识产品 目标有了,问题也有了 和很多人一样,毕业的时候比较迷茫,不知道自己喜欢什么行业、岗位… 就按照专业找了一个对口且擅长的算法工作,先着陆。 因为工作内容,我了解到了产品经理这个岗位,并对它…

掌握跟单与逼单技巧,大单成交不再是空谈!

1、精妙的迎宾艺术:解锁顾客心门的钥匙 在销售的殿堂里,每一位精明的导购都深知,与顾客的每一次接近,都是潜在成交乐章的序曲。掌握“五米关注、三米注视、一米搭话”的技巧,当顾客踏入店铺,目光流转于商品…

Syzkaller部署、使用与原理分析

文章目录 前言1、概述1.1、整体架构1.2、syz-manager进程1.3、syz-fuzzer进程1.4、syz-executor进程1.5、Generate进程1.6、Mutate进程 2、安装与使用2.1、源码安装2.1.1、部署系统依赖组件2.1.2、使用源码安装系统 2.2、使用方法2.2.1、下载编译测试内核2.2.2、配置测试虚拟机…

ElasticSearch分页查询性能及封装实现

Es的分页方式 fromsize 最基本的分页方式,类似于SQL中的Limit语法: //查询年龄在12到32之间的前15条数据 {"query":{"bool":{"must":{"range":{"user_age":{"gte":12,"lte":3…

【Java集合】Set 接口 —— HashSet 与 TreeSet 详解

Set接口和List接口一样,同样继承自Collection接口,它与Collection接口中的方法基本一致,并没有对Collection接口进行功能上的扩充,只是比Collection接口更加严格。与List接口不同的是,Set接口中的元素无序,…

Spring Boot使用配置方式整合MyBatis

文章目录 一、实战目标二、步骤概览1. 创建部门映射器接口2. 创建映射器配置文件3. 配置全局映射器4. 测试映射器接口 三、详细步骤1、创建部门映射器接口2、创建映射器配置文件3、配置全局映射器4、测试映射器接口 四、结语 一、实战目标 在本实战课程中,我们将学…

ChatGPT高级语音助手正式上线!OpenAI:50多种语言、9种声线可选

①OpenAI终于要面向其所有付费用户开放ChatGPT的类人高级人工智能(AI)语音助手功能——“高级语音模式”(AVM); ②所有付费订阅ChatGPT Plus和Team计划的用户,都将可以使用新的AVM功能,不过该模…

qt P2P网络通信(tcp、udp)

一、TCP Qt中的TCP通信是基于Qt框架中的网络模块实现的,主要涉及到QTcpSocket和QTcpServer两个类。TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,适用于需要可靠传输的应用场景,如文件传输…

【实战篇】join语句怎么优化?

背景 在上一篇文章中,我们介绍了 join 语句的两种算法,分别是 Index Nested-Loop Join(NLJ) 和 Block Nested-Loop Join(BNL)。 我们发现在使用 NLJ 算法的时候,其实效果还是不错的,比通过应用层拆分成多个语句然后再拼接查询结…